# IRC data & imaging toolkit

Yoshifusa Ita & IRC team

### Outline

#### Part 1

- IRC data structure
- Characteristics and known problems
- Imaging/Spectroscopic toolkit
- This part is common to both imaging and spectroscopic data
- Part 2
  - IRC imaging data reduction toolkit
  - Things that are not included yet

# Part 1: IRC data

- Focal plane layout
- Observational sequence
- •Structure of IRC fits files
- •Current status and characteristics/problems



### **Focal-plane layout**





- The IRC consists of 3 detectors.
  - NIR (InSb, 512x412)
    - 2-5 um
    - N2,N3,N4 & NP,NG
  - MIR-S (Si:As, 256x256)
    - 5-13 um
    - S7,S9W,S11 & SG1,SG2
  - MIR-L (Si:As, 256x256)
    - 12-26 um
    - L15,L18W,L24 & LG2
- Each camera is equipped with three filters and two dispersion elements.
- NIR and MIR-S observe the same sky but MIR-L and NIR&MIR-S do not observe the same sky.





 A pair of short and long exposures are carried out for the NIR camera while one short and three long exposures are carried out for the MIR detectors. RST indicates a reset of the detectors.



### **Structure of IRC fits files**



- The IRC FITS data is not a usual 2D one. A raw data FITS file is created for each Exposure Cycle during a pointing for the NIR and combined MIR-S/MIR-L channels. (i.e. 1 NIR FITS file and 1 MIR FIT file = 2 FITS files per Exposure Cycle). The filename format is given as F\*\*\*\* N.fits or F\*\*\*\* M.fits, where \*\*\*\*\* is a distinct incremental reference number.
- A NIR raw fits data file is a data cube containing 2 images within it, corresponding to one short and one long exposure.
- Each MIR raw FITS file contains 4 images within it (one short and three long exposures) for both the MIR-S and MIR-L channels respectively making a total of 8 frames per MIR FITS file per Exposure Cycle.

2007/Sep/18



# Difference from the familiar fits files (summary)



- 3-dimensional
  - 1 NIR fits file contains:
    - 1 short exposure image
    - 1 long exposure image
  - 1 MIRS fits file contains:
    - I short exposure image for MIRS and MIRL
    - 3 long exposure image for MIRS and MIRL
- MIRS and MIRL do not observe the same sky, but they are stored in one fits file.

## What you will get = rawdata

- Your data can be obtained from:
  - <u>http://darts.isas.jaxa.jp/astro/akari/getData.html</u>
- The data are encrypted with GPG
  - e.g.: AKARI\_IRC\_2200007\_001.tar.gpg
- Decrypted data are stored in a tar ball.
  - e.g.: AKARI\_IRC\_2200007\_001.tar
- Unpack the tarball
  - -> next slide

### inside the tar ball



- README and a directory(TargetID.subID)
  - README
    - observation summary, etc.
    - Please read through this file.
  - TargetID.subID/ e.g.: 3080003.1
    - rawdata
      - contains raw data
        - F????????[N|M].fits: raw data
        - \*.Ist: list of data files observed with each filter/grism
        - World Coordinate System Parameters are given in the fits header
    - irc\_ql
      - contains processed data with standard toolkits with standard options.
      - only for quick look purpose.
    - see README for details of the text files inside the two directories.

### Very important Fits Header Keyword = WCSROOT

- WCSROOT
  - AOCS (Default)
    - on the basis of Attitude and Orbit Control System
    - Accuracy is better than 30 arcsec
      - Depends on ecliptic latitude of target because of aberration
  - 2MASS (After using toolkits)
    - on the basis of 2MASS coordinates
    - matching 2MASS sources with point sources detected
    - Accuracy is better than a few arcsec, and in most cases, better than 1 arcsec
      - Depends on how match stars were matched.
        AKARI / IRC DR Workshop @ ESAC



# Current status and characteristics/problems (1)

#### • The number of hot pixels are increasing







# Current status and characteristics/problems (2)

- Detector linearity
  - measured with IRC installed in the laboratory and in flight like configuration
  - measurements were made with calibration lamp that illuminates detector and an increasing range of integration times
  - after the correction, the deviation from the ideal linear curve is better than 5% at the DN of 12000 and 30000 in NIR and MIR, respectively



### **Current status and** characteristics/problems (3)

10.7

10.6

- Dark and/or Bias stability
  - dark level is NOT stable during 1 pointing.
  - super-dark images were made with pre-dark data taken in LMC survey. They are "shifted", i.e., add/subtract a certain constant, by checking slit area in each image, and then subtracted.
  - NIR: no apparent correlation with detector temperature
  - MIR: weak correlation with detector temperature
  - dark level is very high after passing SAA



# Current status and characteristics/problems (4)



- Flat field
  - NIR
    - NEP survey data
    - S/N : about 10
  - MIR
    - NEP survey data
    - S/N : more than 100
- Stray light
  - present in all detectors
  - unexpected high background probably due to external (Earth) light, which is not uniform over the FOV (MIR-L)
  - flat-field are affected
  - observation of diffuse background will suffer



2007/Sep/18

### Current status and characteristics/problems (5)

- Aperture Correction
  - IRC flux calibration were made by observing standard stars (point source)
  - we assume that all flux are come into certain radii (10 and 7.5 pixels for NIR and MIR).
  - these radii are large compared to S/N optimal apertures
  - the amount of flux enclosed in these radii is still UNKNOWN (i.e., flux calibration for diffuse source is still unknown)
  - aperture corrections must be applied when using different apertures
  - we will provide aperture corrections, but observers are encouraged to see their own curves-of-growth because the PSF differs from pointing to pointing



Signal

Noise  $\sqrt{\pi}noise_{nixel}$ 

i.e., S/N  $\propto$  EE(r)/r

2007/Sep/18

AKARI / IRC DR Workshop @ ESAC

17

# Current status and characteristics/problems (6)

- Ghost in slit-area
  - NG slit-spectroscopic data would be damaged if bright stars were present in the imaging area.
  - Details → Ohyama-san's presentation.





- Aspect ratio and Distortion term
  - The deviation from an ideal lattice is up to 2, 0.6, and 16 pixels at the edge for NIR, MIRS and MIRL, respectively. There is little difference with filters among a detector.
  - Main contribution of the deviation comes from aspect ratio disorder.
  - Distortion term (non-linear term) is very small, but present in MIR-L detector.
  - Toolkit corrects aspect ratios, but not distortion.
  - the resultant pixel scales of NIR, MIRS, and MIRL become 1.446, 2.340, and 2.384

arcsec/pixel, respectively. All detectors have wide field of views of 10'x10.

2006/Oct/1

# Current status and characteristics/problems (8)

- Latent in MIR-S&L
  - Flat changes after observing very bright stars.
  - A few % decrease
  - Last for several (up to 8) hours



# Imaging/Spectroscopy toolkits Common Principles

- Please use our toolkits, not yours
  - our toolkits includes calibration data
    - Imaging
      - linearity, flat, etc.
    - Spectroscopy
      - flux calibration, flat, etc.
  - calibration data may be updated in the future
- Please send your new tool to helpdesk.
  - we will test it, and maybe ask you to allow us to distribute.

### **Toolkits: Where to get?**



- Imaging/Spectoscopic data reduction toolkits can be downloaded from:
  - <u>http://www.ir.isas.jaxa.jp/ASTRO-F/Observation/DataReduction/IRC/</u>
  - Manuals, Tips, and FAQs are also there.

#### • For Help

- send emails to helpdesk: iris\_help@ir.isas.jaxa.jp
- Do not forget to tell us your TargetID.
- Please read the manual and FAQs again before sending emails.

# Part 2: IRC imaging toolkit

- Requirements
- Outline
- •What you will get
- Things not included yet

### Requirements

- Unix (Linux, BSD, OSX, Solaris)
- Perl
- GCC3.0 or later
- IRAF version 2.12.2 or later
- curl (for WCS calculation on Solaris)
  - Imaging pipeline may work on Intel-Mac PC
  - Does not work on Windows PC



# **Outline of pipeline**

- Red Box (pre-pipeline processor)
  - header formatting
  - Make observing log
- Green Box (pipeline processor)
  - instrumental signature correction
    - wraparound, fowler/bit-shift renormalization
    - dark subtraction, linearization, flat fielding, distortion correction etc.
  - <u>Make Basic Data</u>
- Blue Box
  - co-add dithered images (multi-pointing compliant)
  - Make Post Basic Data



prepipeline

pipeline



- Basic Data
  - single image
    - The unit of resultant image is in [DN]
      - absolute calibration is not applied
      - [DN] depends only on exposure time, i.e., you can compare data among any AOTs and short/long exposure images by only considering the difference of exposure times.
      - a table to convert from [DN/sec] to [Jy] for each filter is supplied by Dr. Tanabe.
    - Calibrated:
      - linearization applied
      - dark subtracted (using super-dark or self-dark)
      - flat-fielding applied (using super-flat)
      - distortion corrected



- Post Basic Data
  - coadded image for each filter
    - Sometimes pipeline fails to coadd MIRL (L15, L18W, L24) images.
      - However, there is a help tool that uses MIRS shift/rotation to coadd MIRL images.
    - Basic WCS is supplied in the header by default
      - Pipeline can automatically match 2mass sources to improve accuracy by using a tool (not applied by default. this is an option).
      - sometimes the tool fails to match 2mass sources(L15, L18W, L24)
      - Accuracy is

11

- Better than 30 arcsec after pipeline (WCSROOT=AOCS)
- Depends on  $\beta$  because of aberration
- Better than a few arcsec after matching 2mass sources (WCSROOT=2MASS)

2007/Sep/18

Depentds of how many stars were matched



## Things not included yet (1)

- Muxbleed
  - present in NIR
  - trail of bright pixels in read direction every 4<sup>th</sup> column





### Things not included yet (2)

- Column Pulldown
  - present in NIR
  - a bright source results in a decrease of 20 – 60 DN in the entire column(s)





# Things not included yet (3)

- Ghost in imaging-area
  - present in all detectors
  - position and strength differ from detector to detector and also from filter to filter.
  - strongest (~ 4% of parent source) in S11
  - caused by internal reflections in beam splitter and also lenses.





# Appendix

what you will get from the pipeline &

structure of pipeline



- Other files (0)
  - irclog
    - created by prepipeline
    - observing log
  - darklist.before
    - created by prepipeline
    - a list that contains the name of dark images taken before observation.
    - required if you want to use selfdark image instead of super-dark



- Other files (1)
  - F???????[NSL]00[1-4].fits
    - created by prepipeline
    - split 3D raw fits files into usual 2D ones.
    - headers are overwritten
      - CPIX1&2
      - FILTER
    - almost equals to raw data except for dimension and headers.



- Other files (2)
  - ef\*F???????[NSL]00[1-4].fits
    - created by pipeline just before coadd process.
    - all things are calibrated
      - dark, flat, linearity, distortion, etc...
    - Basic Data



- Other files (3)
  - Sef\*F???????[NSL]00[1-4].fits
    - f\*F????????[NSL]00[1-4].fits
      - 412x512 (256x256) : NIR (MIRS&L)
    - copy it to big frame
      - 1024x1024 (512x512) : NIR (MIRS&L)
  - Sef\*F???????[NSL]00[1-4].fits.coo.1
    - result files of source detection
    - contains xy coordinate and arbitral brightness
  - Sef\*F???????[NSL]00[1-4].fits.shift
    - result files of calcshift.cl
    - database file to correct shift and rotation



- Other files (4)
  - RSef\*F????????[NSL]00[1-4].fits
    - rotation and shift corrected Sf\*\*.fits images
  - ASef\*F???????[NSL]00[1-4].fits
    - Sky adjusted Rsef\*.fits images
    - These files are actually combined to make the final coadded images.



38

# What you get from the pipeline

- Other files (5)
  - Iong(short)\_exp.input
    - list file containing the name of pair files for long/short exposure.
  - pair000?\_[filtername].list
    - list file containing the name of files taken by filtername filter.
  - pair000?\_[filtername].list\_long(short)
    - split pair000?\_[filtername].list according to exposure time (long/short).
  - pair000?\_[filtername].list\_long(short).shift & shift.0
    - contains dx[pix],dy[pix],dr[deg] (relative to the "first" image), and # of stars matched to calculate dx,dy,dr.
  - pair000?\_[filtername].list\_long(short).combine
    - contains filename that were combined to create coadded images. Note that images with outlier sky levels were excluded from the coaddition.

2007/Sep/18



- Other files (6)
  - files in logs
    - calcshift.log
      - log of calcshift.cl
      - see for the rms of x and y linear fit results.
    - skypair000?\_[filtername].list\_(long/short)
      - log file of adjust\_sky.cl that shows mean,median,mode of the sky level, and sigma.
      - any files with outlier sky level will be excluded from the combine process.



- Other files (7)
  - files in stacked\_IM
    - Objectname\_[filtername]\_(long/short).fits
      - result
      - post basic data
    - plObjectname\_[filtername]\_(long/short).fits
      - NCOMBINE values in each pixel = exposure map
    - sigmaObjectname\_[filtername]\_(long/short).fits
      - standard deviation of each pixel



# Structure of pipeline(2)

- binary
  - binary files
    - convert2mass
      - used in putwcs
    - convert2mass\_all
      - used in putwcs
    - lonesome
      - used in calcshift
    - mkflatpair
      - used in flat
    - mkpair
      - used in coadd



src

2007/Sep/18

# Structure of pipeline(3)

- lib
  - library files
    - constants.database
      - all irc constants are in this file.
      - you can edit it at your own risk
    - setenv.dat
    - setpath.dat
    - setpath.pl
    - welcome.org



2007/Sep/18

# Structure of pipeline(4)

- lib subdirectories
  - anomalous\_pix
    - known hot/bad pixel map images
  - dark
    - super-dark images
  - distortion
    - distortion database
  - flat
    - super-flat images
  - slit\_mask
    - slit-area mask images







