Phase-3 IRC data & imaging pipeline

Yoshifusa Ita & IRC team

Part 1: Phase3 IRC data

• Differences from the Phase 1&2

- Observation sequence
 - Now it takes 10 dark images
- Data quality
 - PSF
 - Sensitivity
 - Linearity, Saturation limits

Observation sequence in Phase3

Exposure time (Long&Short) is same as in Phase1&2

Observation sequence: differences from P1&2

- Take 5 dark images BEFORE observing a target.
- Take 5 another dark images AFTER observing a target.

In total, 10 dark images are taken in 1 pointing. (cf.only 2 NIR dark images were taken in P1&2)

- The IRC FITS data is not a usual 2D one. A raw data FITS file is created for each Exposure Cycle during a pointing for the NIR channel. (1 NIR FITS file per Exposure Cycle). The filename format is given as F**** N.fits, where ***** is a distinct incremental reference number.
- A NIR raw fits file is a data cube containing 2 image within it, corresponding to one short and one long exposure.

Data quality (1) Broad overview

The same field observed in Phase3

PSF and Saturation limits get worse. Image gets noisy

Data quality (2) PSF: slightly get worse

Data quality (3) No. of Hot pixels: Increased

Dark image in Phase1&2 Dark image in Phase3

Number of hotpixels -> Significantly increased.

AKARI / IRC Phase-3 data user's me

Data quality (4) Sensitivity: get worse by 0.7

- Compared the aperture photometry fluxes of the same star.
- Assuming that the system throughput has not changed.

Data quality (5) Dynamic Range: get 1/6

- Dynamic range get narrow
 - 12000 ADU -> 2000 ADU
 - get 1/6
- Saturation Limit get worse
 - About 9 mJy at N3@Long
 - Cf. about 30 mJy in Phase1&2
- Detector linearity
 - measured with in-flight data taken in PV2 phase.
 - Take calibration lamp image with increasing range of integration time
 - after the correction, the deviation from the ideal linear curve is better than $\pm 5\%$ at the DN of 2000

AKARI / IRC Phase-3 data user's meeting

Data quality (6) Flats: don't look good

N2, N3, and N4 flat images from left to the right. Displayed level: 0.95-1.05

- Flat field images
 - Made with all imaging data obtained so far in phase3
 - Will be updated in future, by using more data.

Data quality (7) Short frame: Exp time ????

- Those who use
 - AOTZ0 and AOTZ4

should not use short exposure data. (at now)

Their Tlong / Tshort ratio is not understood yet.

System stability

- We monitor several stars in the CVZ
 - Using data taken in the period from Apr to Oct.
 2008
 - Data provided by Dr. T. Tanabe

Summary

- Analyses of phase-3 N3 image showed that
 - PSF: slightly gets worse
 - Sensitivity: gets worse by 0.7
 - Saturation limits: gets worse
 - 30 mJy -> 9 mJy @N3, long exposure
- N2 and N4 will be analyzed, although we do not expect match dependency on wavelength.
- Calibration constants (ADU -> Jy) are not supplied yet.

Part 2: imaging pipeline for Phase3

- Requirements
- Changes from the previous version

Requirements

- Unix (Linux, BSD, OSX, Solaris)
- Perl
- GCC3.0 or later
- IRAF version 2.12.2a
 - Does not work on IRAF 2.14.
 - May work on IRAF 2.14.1 (Not fully tested).

Changes from the previous version.

- Not significantly changed
 - Only but important change: Handling of DARK.
 - Now self-dark is always used.
 - Cf. With phase1&2 pipeline, super-dark was always used for NIR data, because there were only 2 darks.
 - In phase3, we have in total 10 independent dark images in a pointing opportunity. These dark images are combined to make a self-dark image, and then it is subtracted from each object image.
- No change in usage, nor structure of the pipeline