「あかり」北黄極サーベイデータと すばるHSCデータを用いた 活動銀河核活動度

関西学院大学 大井 渚

共同研究者:後藤友嗣(NTHU), 松原英雄(JAXA), 宮地崇光(UNAM),

内海洋輔(広島),鳥羽儀樹(ASIAA),他NEP team

NEPサーベイのメリット

- 1. 広い = 統計的な研究
- 2. 深い = 赤方偏移進化の研究
- 3. N/MIRで連続的+多波長の測光データ
 - = SED fit によるAGN成分分離
- 4. NEP = 宇宙望遠鏡からの可視性が高く 将来衛星との相性◎

星形成抑制効果

近傍宇宙で、バリオン質量より星質量が顕著に小さい ⇒ 星形成を妨げる効果が過去にあった

星形成抑制効果

z ≤ 1で星形成率が急降下

⇒ 星形成抑制効果はz ≤ 1で効果的だった

星形成抑制効果

ブラックホールへの降着率と星形成率は良く似ている ⇒ 星形成抑制効果とブラックホールの関係は?

銀河合体とAGNと星形成抑制効果

銀河合体

銀河成長のメインメカニズム 星形成活動とブラックホールの活動が活発化

活動銀河核(AGN)

活発化した銀河中心巨大ブラックホール 膨大な放射

銀河合体とAGNと星形成抑制効果

AGN feedback

- AGNからの膨大な放射により星形成を抑制する効果

赤外線銀河

- ダストに隠された領域で活発な活動 が行われている銀河
- 合体中の銀河は赤外線(で明るい)銀河として観測されやすい

赤外線銀河に対して、星形成とAGN の活動度の関係について調べる

Narayanan et al. 2010

「あかり」北黄極領域サーベイ

PI: H. Matsuhara, H. M. Lee 指向観測の13%を投入

北黄極

北黄極領域サーベイ

多波長測光追觀測

Maidanak

MegaGam u*-band

MegaCam g,r,i,z

SPIRE

Chandra

GALEX

S-Cam

MegaCam

WIRCam

PACS

分光觀測

Shim et al 2013, Oi et al. submitted, Takagi et al. in prep Miyaji et al. in prep Malkan et al. in prep Shogaki et al. in prep

すばる/HSCデータ

- 10万天体@NEPWで、可視対応天体が見つかったのは7.8万天体
 - ⇒ 2.2万天体はかなり強く減光している天体の可能性
- ダストに埋もれたAGN/SFを調べるには 深い可視データが必要

Hyper Suprime-Cam

すばる/HSCデータ (PI: T. Goto)

271万天体検出

S14A, 2014/06/30 r-band: 7 FoV

S15B, 2015/08/07-11 g, i, z, Y-bands: 4 FoV

観測時間: r:?

g: 5.2h, i: 0.2h, z: 0.2h, Y: 0.7h

すばる/HSCデータ

限界等級 g~27.0, i~25.5, z~25

NEPWとのマッチング数 89178天体

これまで見過ごされてきた 「可視で非常に暗い」赤外線銀河を 1万天体以上新たに検出

NEPサーベイのメリット

- 1. 広い = 統計的な研究
- 2. 深い = 赤方偏移進化の研究
- 3. N/MIRで連続的+多波長の測光データ
 - = SED fit によるAGN成分分離
- 4. NEP = 宇宙望遠鏡からの可視性が高く 将来衛星との相性◎

サイエンスケース1. SED fittingによるLagn推定

代表的な銀河のスペクトルエネルギー分布

SED fittingによるAGN/SF分離

Buat, Oi et al. 2015

- 星形成とAGNのSEDが最も異なる波長をカバー
- 赤外線銀河から、AGN候補を無バイアスに選定可
- 全赤外線放射を、星形成由来とAGN由来に<mark>定量的</mark>に分離可

サイエンスケース1.

SED fittingによるAGN/SF分離

赤外線銀河に対するLAGNとLSFの関係を統計的に調べられる

サイエンスケース2.

Compton Thick AGNの探査

2017年打ち上げ予定のX線天文衛星Spectrum RG/eROSITA

- 0.2~12keVまでのX線を捉えることが可能な全天サーベイ衛星
- @ L2
- NEPW領域を含むNEP方向の約25deg²に渡る撮像データ
- Prof. R.Sunyaevと共同研究について協議中

Compton Thick AGNの探査

- semi-CT AGN (log(N_H)~23.5)が NEPW内に~300個 見つかると予想

SED fitting AGN候補のうち 「塵に深く隠された(特にCompton Thick) AGN」

がどれくらい存在するかを統計的に調べることが出来る

まとめ

- 1. 広い = 統計的な研究
- 2. 深い = 赤方偏移進化の研究
- 3. N/MIRで連続的+多波長測光データ
 - = SED fit によるAGN成分分離
- 4. NEP = 宇宙望遠鏡からの可視性◎ 将来衛星との相性◎

赤外線銀河に対して、星形成とAGNの 関係について調べることが出来る