SPICA FIR imaging polarimeter

2017/11/22 @ SPICA science workshop Y.Doi

SPICA status

- ESA cosmic vision M5 candidate
 - 1st selection in this December
- ISAS strategic large-class mission in the late 2020's
 - one of the "hightest-priority large projects" by the Science Council of Japan
 - one of the top rank "Large-Facilities and Projects Roadmap" by MEXT

Observatoin by SPICA

- ϕ 2.5m, cooled telescope (< 8K)
- Mission life: 2.5yrs nominal, +2yrs extension foreseen
- Target visibility: once / 6 months
- Key programme + General programme
- Guaranteed time & Open time

SPICA Instruments

1. SMI

- $17 36 \mu {
 m m}$ background limited spectroscopy, $R \sim 100 2000$
- $10' \times 12'$ survey camera and $R \sim 100$ spectrometer
- $12-18\mu{
 m m}$ spectroscopy at $R\sim 28000$
- 2. SAFARI-SPEC
 - $34-230 \mu {
 m m}$ background limited spectroscopy, $R\sim 300-11000$
- 3. SAFARI-POL
 - 100, 200, 350 μ m imaging polarimeter

Diffraction-limited Spatial Resolution

wavelength [μ m]	12.0	18.0	36.0	100.0	200.0	230.0	350.0
resolution [arcsec]	1.2	1.8	3.6	10.1	20.1	23.2	35.2

SPICA sensitivity

SPICA FIR imaging polarimeter

Polarisation-sensitive bolometer array

credit : CEA Saclay

A possible array configuration: Stokes array

Detector performance in practical observations How faint can we observe?

- confusion limit (unpolarised): 0.15 mJy (PACS-100 μ m), 0.68 mJy (PACS-160 μ m; Magnelli et al. 2013, A&A 553 A132 @ the GOODS-S field)
 - pointed observations can achieve confusion limited sensitivity instantaneously
- polarisation sensitivity: $\sqrt{2}/P$ times of the photometric (unpolarised) sensitivity
 - confusion limit for polarised intensity...??

Sensitivity vs. Confusion limit (tentative)

Detector performance in practical observations How bright can we observe?

- detector/array dynamic range : > 8000
- several sensitivity modes are expected for different ranges of sky brightness
 - lower bias current \leftrightarrow better sensitivity for faint sources
 - higher bias current \leftrightarrow higher saturation limit
 - *cf.* sources brighter than $\sim 1 \text{ Jy}$ can be observed by HAWC+

Mapping speed – How wide can we map?

• $1^{\circ} \times 1^{\circ}$ mapping in a few ~ 10 hours can achieves the confusion limited sensitivity.

PACS green channel PSF for 10"/sec, 20"/sec, and 60"/sec.

- scan speed $\gg 20[''/sec]$ or $\gg 1[\text{deg}^2/\text{hour}]$ is not realistic according to PACS experiences

SPICA / SAFARI_Pol Fact Sheet

A polarimetric camera with 3 simultaneous bands 100, 200 & 350 μ m on the same FOV : 2,6' x 2,6' @ 0,6 f# λ sampling

	2 3 6		
	100µm	200µm	350µm
nd edges	75—125µm	150—250µm	280—420µm
of pixels	32 x 32 (x 2)	16 x 16 (x 2)	8 x 8 (x 2)
æl size	5" x 5"	10" x 10"	20" x 20"
nd centre beam FWHM	9"	18"	32"
sensitivity /1h/FOV (unpolarised)	21µЈу	42µJy	85µЈу
sensitivity in Stokes (Q,U) /1h/FOV (polarised)	30µЈу	60µЈу	120µЈу
sensitivity /10h/1deg² (unpolarised)	0.16 mJy	0.32 mJy	0.65 mJy
sensitivity in Stokes (Q,U) /10h/1deg²(polarised)	0.23 mJy	0.46 mJy	0.92 mJy
rface brightness sensitivity /10h/1deg²(unpolarised)	0.09 MJy/sr	0.045 MJy/sr	0.025 MJy/sr
nsitivity to map Stokes rameters (Q,U) at 5% level	2.5 MJy/sr	1.25 MJy/sr	0.7 MJy/sr

STREET, STREET

SAFARI GS Factsheet V0.9 - 8th April 2016

(b) $\lambda/\delta\lambda = 120$ (SMI/LR) and 1300 (/MR) at $\lambda = 36 \mu m$.

(c) designed for $\lambda 20 \ \mu m$ diffraction limited PSF.

(d) sensitivity for an unresolved line.

(e) survey speed for the 5 σ detection of a point source with the continuum flux of 100 μ Jy for SMI/LR at λ = 30 μ m (/CAM at 34 μ m) and the line flux of 3x10 19 W/m² for /MR at λ = 28 μ m, both in the low background case (see the right-hand figure).

(f) sensitivity for a diffuse source in a 4" x 4" (SMI/LR , /MR) or 2" x 2" area (/HR).
(g) background levels are assumed to be 80 MJy/sr (High) and 15 MJy/sr (Low) at 25 μm.

Wavelength (µm)

(h) continuum sensitivity rescaled with R = 50.

SMI Factsheet v10 – 4 Jan 2016