Grain alignment theory and polarimetry with SPICA: a personal review

Masafumi Matsumura (松村雅文@香川大学教育学部)

Grain alignment with DG mechanism

- Discovery of polarization in distant stars Hall 1949, Hiltner 1949
- Alignment with paramagnetic relaxation Davis and Greenstein 1951
 - Phase lag of magnetization → torque that makes angular momentum J // B
 - Alignment time scale τ_{DG} :

Draine & Weingertner 1996

$$\tau_{DG} = \frac{2\alpha_1 \rho a_{eff}^2}{5K(\omega)B_0^2}$$

$$= 1.5 \times 10^6 \alpha_1 \rho_3 a_{-5}^2 \left[\frac{10^{-13} \text{ s}}{K(\omega)} \right] \left(\frac{5 \mu G}{B_0} \right)^2 \text{ yr}$$

(Davis & Greenstein 1951), where $K(\omega) \equiv \text{Im } [\chi(\omega)]/\omega$ $\approx 10^{-13} \text{ s}$ for normal paramagnetism at $T \approx 18 \text{ K}$

Rotational damping by gas drag:

$$\tau_{\rm drag, gas} = \frac{\pi \alpha_1 \rho a_{\rm eff}}{3\delta n_{\rm H} (2\pi m_{\rm H} kT)^{1/2}} = (8.74 \times 10^4 \text{ yr})$$
$$\times \frac{\alpha_1}{\delta} \rho_3 a_{-5} T_2^{1/2} \left(\frac{3000 \text{ cm}^{-3} \text{ K}}{n_{\rm H} T} \right)$$

where $\rho_3 \equiv \rho/3$ g cm⁻³, $a_{-5} \equiv a_{\rm eff}/10^{-5}$ cm, and $T_2 \equiv T/10^2 {\rm K}$.

 α_1 , δ : shape factor, $\alpha_1 \sim \delta$

• $\tau_{DG} >> \tau_{drag}$ DG is very slow process. No alignment? A "mystery" in 1950-1980s.

Grain alignment by Radiative Torque (RAT)

- Dolginov & Mytrophanov 1976, Draine & Weingartner 1996, 1997, Lazarian et al. many papers
- Irregular Grains rotate rapidly by RAT → magnetized by the Barnett effect

The Barnett magnetic moment is

DW 1997

$$\mu = -\frac{\chi(0)V\hbar}{g\mu_{\rm B}}\,\omega\;,$$

 $\mu = -\frac{\chi(0)V\hbar}{g\mu_{\rm B}}\omega$, where V is the grain volume, $\mu_{\rm B}$ is the Bohr magneton, $g\approx 2$ is the gyromagnetic ratio, and $\chi(0)$ is the static susceptibility. tibility.

• \rightarrow Larmor precession around interstellar magnetic field B₀, i.e. directions of J and B_0 is related, with frequency Ω_R

$$\Omega_{\rm B} = \frac{\mu B_0}{I_1 \omega} = \frac{5\hbar \chi(0) B_0}{2\alpha_1 g \mu_B \rho a_{\rm eff}^2}$$

$$\approx 7.5 \text{ yr}^{-1} a_{-5}^{-2} \left(\frac{3 \text{ g cm}^{-3}}{\alpha_1 \rho} \right)^{1/2} \left[\frac{\chi(0)}{10^{-4}} \right] \left(\frac{B_0}{5 \mu \text{G}} \right)$$

where we have set $g \approx 2$. It is therefore clear that interstellar grains will precess around B_0 very rapidly compared to all other timescales except the grain rotation period itself.

• Period of the Larmor precession $\tau_{\rm B} = 1/\Omega_{\rm B} \sim 0.1$ year ... very rapid!

Some phrases by authors...

- Cugnon P. (1987)
 - "... What concerns coherent derivations of the magnetic field strength, my general impression remains rather pessimistic, but not desperate."

 in the proceedings of "Interstellar Magnetic Fields" ed. Beck & Graeve, pp.100-109
- Draine and Weingartner (1996)
 - "... It therefore appears that the longstanding mystery has been solved -- the observed alignment of interstellar grains is due to radiative torques produced by anisotropic starlight!"

Possible plans for observations with SPICA pol.

- RAT alignment seems most probable at present.
- Assuming RAT, what can we expect for observations?

- To understand more about the RAT theory (and other things...), we may observe the borders where grains are aligned / not aligned by RAT.
 - If radiation field is weak, grains do not rotate by RAT.
 - → Grains are not magnetized by the Barnett effect → No alignment

e.g. Starless cores?

- If rotational damping by gas drag is strong, i.e. τ_{drag} is small,
 - $\rightarrow \tau_{drag} \ll \tau_{B}$ i.e. the rotation is damped before precession
 - → No alignment

e.g. Outflow around SF regions?

A Possible Science with SPICA polarimetry: Starless cores

An example:

LDN 183

Planck 353GHz

Resolution for pol.: 6'×6'

Fractional polarization drops in L183,

i.e. polarization hole.

Relation between pol. efficiency p/τ and τ

• In diffuse space, the observed dichroic extinction shows:

$$p/\tau \, \propto \, 1 \, / \, \tau^{0.5}$$
 If B is random, then $\, p \propto \tau^{0.5}, \,$ and $\, p/\tau \,$ goes as $\, 1 \, / \, \tau^{0.5}$

• If we see a uniform B-field, i.e. not random, p \propto τ , and then, p/ $\tau \propto \tau^0 \sim \text{const}$

• In very dense region where radiation is weak, e.g. starless cores, grains do not rotate by RAT. Then they are not magnetized, and not aligned.
As a result, p does not increase as τ, and is constant:

$$p/\tau \propto 1/\tau$$

L183 & L43. Jones + 2015

 $p/\tau \propto 1/\tau$ for $A_v > 20$ mag.

→ They suggest that grains are not aligned in $A_v > 20$ mag.

But, systematic difference exists between observational methods?

LDN 183 in Akari Wide-L band

Max: ∼90 MJy/Sr

Min: ~13 MJy/Sr

It seems the flux is strong enough to observe with SPICA polarimeter.

Since SPICA has large dynamic range > 8000, such observations should be feasible and important.

Another Possible Science with SPICA polarimetry: YSO

- An example: R Mon ... a Herbig B star
 Scarrott + 1989 MNRAS 237 621
- Two features in polarization map:
 - (1) <u>"Aligned Pattern"</u> near star
 - → interpretations in 1980-1990s:
 - extinction by aligned nonspherical grains (Scarrott et al. 1989) ... since the DG time is long, it was questioned.
 - multiple scattering by grains (Bastien et al. 1990)
 - → Recent submm/mm linear pol. & circular pol. obs.
 - suggest both ext. & multiple scat. by aligned grains
 - → SPICA pol. may observe grain alignment (=B fields)!
 - (2) <u>"Centro-symmetric Pattern"</u> in outer region
 - Single scattering by non-aligned grains seems OK, but some evidence of alignment

Deviations from symmetry

Figure 11. The *I* data used in Fig. 10 but plotted so as to highlight the deviations from the circular symmetry expected for a simple reflection nebula. The centres of measurements of polarization parameters are equally spaced on circles concentric about R.Mon. For a simple reflection nebula all vectors should be tangential to the circle on which it is drawn. Note the drastic deviations in the central regions; this is the polarization disc. To the north of R.Mon there is the expected centro-symmetric pattern representing the optically thin reflection nebula. On the eastern and western peripheries of this region the pattern is distorted.

R Mon: Scarrott + 1989 MNRAS 237 621

R Mon: Matsumura et al. unpublished (not yet?)

A Model of Single Scattering by Aligned Grains

Figure 2. Linear polarizations by oblate (2:1) grains (left) and those by spherical grains (right).

Matsumura & Seki 1996, ASPC 97, 63

Fig. 4. Model configuration for comparison with the results of Matsumura & Seki (1996). It consists of a thin dust layer at the surface of a hemisphere. The ratio of the inner radius to the outer one amounts to $r_{\rm in}/r_{\rm out}=0.99$. The shell contains oblate grains, whereby their rotation axes (b) are oriented parallel to the z-axis. The dark grey oval pattern symbolizes the aligned grains. The configuration is shown for y=0 (xz-plane, the azimuthal angle $\Phi=180^{\circ}$). An observer sees the radiation at the scattering angles $\Theta=0^{\circ}-90^{\circ}$. In this case the condition $\Theta+\alpha=90^{\circ}$ is satisfied in all points of the dust layer.

Wolf et al 2002, AA 385, 376

Circular polarization in outflow of HH135-136

Left: intensity (Kn-band)
Right: circular polarimetry (Kn-band)
Black: negative, white: positive CP
Minimum Pc = -8%.
Chrysostomou + 2007 Nature 450, 71

Pinched magnetic field is proposed. If nonspherical grains are aligned, and ligt is scatterd by them, PC will appear.

Grain Alignment is common in outflow region?

- Large circular polarization is only in massive star-forming regions?:
 - 15% (H) in R CrA (Clark et al 2000)
 - 15% (K) in OMC1 (Bailey et al. 1998; Chrysostomou et al. 2000; Buschermoehle et al. 2005)
 - 23% (K) in NGC6334V (Menard et al. 2000, Kwon et al. 2013)

... Grain alignment may be common in the massive SFRs? But only massive SFRs?

- If this is the case, why?
 - Strong B in massive SFRs? and/or Grains strongly illuminated by star(s)?
 → Those make RAT alignment more effective.
 - B fields in massive SFRs are simpler than those in lower ones?
 - Or we just overlooked large PC in less massive SFRs?
 - → Systematic Observation of YSOs with SPICA will answer such questions.

That's it! Thank you!