SPICA Meeting in 2017 (ISAS/JAXA, 22Nov. 2017)

Observations of disks around
young stellar objects

Recent progresses and

Prospects of polarization observations
with SPICA

Munetake MOMOSE (Ibaraki University)
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(1) Polarization observations of
Protoplanetary & Debris Disks



Polarization in a protoplanetary disk
A new window opened by ALMA

HD142527 at A=874pum HL Tau at A=3.1 mm
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spatial resolution is critical to reveal
small-scale structure of polarization vectors




theoretical background
Origin of dust polarization at mm-submm

: : 1. Thermal emission of “aligned” grains (Tazaki+ 2017)

¢ [wo alignment mechanisms
A. J Il B : Larmor precession (B: magnetic field)
B. J Il k : Radiative precession (k: net radiation flux)

e Radiative alignment (J Il k) seems dominant for a large
grains (@ > 100pum) in a protoplanetary disk

2. Self- scattering of anisotropic radiation fields by

dust grains (Kataoka+ 2015, 2016a; Yang+ 2016)

e High albedo, and, High pol. efficiency are required «
prominent only at A~ (2m)amax ; strong A-dependence !



Two external alignment mechanisms
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Various timescales of related processes in
a protoplanetary disk (Tazaki et al. 2017)
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theoretical background
Origin of dust polarization at mm-submm

1. Thermal emission of “aligned” grains (Tazaki+ 2017)

¢ [wo alignment mechanisms
A. J Il B : Larmor precession (B: magnetic field)
B. J Il k : Radiative precession (k: net radiation flux)

e Radiative alignment (J Il k) seems dominant for a large
grains (@ > 100pum) in a protoplanetary disk

2 Self-scattering of anisotropic radiation fields by

dust grains (Kataoka+ 2015, 2016a; Yang+ 2016)

e High albedo, and, High pol. efficiency are required «
prominent only at A~ (2m)amax ; strong A-dependence !
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Polarization directions
e \=3.1mm: azimuthal « radiative alignment (i.e., J Il k)

e \=0.87mm: parallel to the minor axis « self-scattering

e consistent with the case of amax = 100pm with n(@) « a3
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Protoplanetary Disks/Debris Disks with
SPICA/SAFARI

® protoplanetary disks are very bright at A=160pm
m 89.1 Jy (HL Tau) & 4.1 Jy (TW Hya) : “filled” T Tauri disks
m1.9Jy (V1094 Sco) & 1.8 Jy (Sz 91) : “transitional” disks

® will not be able to spatially resolve them...

B polarization will be detected only when the polarization
directions in the disk are rather uniform

B \-dependence of polarization detection — scattering ?
(Kataoka-san’s talk)

® can detect & resolve POL in nearby debris disks
m (3 Pic, Fomalhaut, € Eri, Vega : “The Fabulous Four”
BT Cet: 120 mJy at A=170um (ISO) rout = 52au at d=3.65 pc
B Alignment mechanism, constraint on dust size, etc.



Fohmalhaut age = 0.44 Gyr: e Eri age = 0.8-1.4Gyr:
(MacGregor+ 2017) d=7.66 pc; A4V (Chavez-Dagostino+ 2016)  d=3.22 pc; K2V
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Protoplanetary Disks/Debris Disks with
SPICA/SAFARI

® protoplanetary disks are very bright at A=160pm
m 89.1 Jy (HL Tau) & 4.1 Jy (TW Hya) : “filled” T Tauri disks
m1.9Jy (V1094 Sco) & 1.8 Jy (Sz 91) : “transitional” disks

® will not be able to spatially resolve them...

B polarization will be detected only when the polarization
directions in the disk are rather uniform

B \-dependence of polarization detection — scattering ?
(Kataoka-san’s talk)

® can detect & resolve POL in nearby debris disks
m (3 Pic, Fomalhaut, € Eri, Vega : “The Fabulous Four”
BT Cet: 120 mJy at A=170um (ISO) rout = 52au at d=3.65 pc
B Alignment mechanism, constraint on dust size, etc.
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(2) The role of magnetic fields
In protostellar phase :
disk formation, outflow ejection



Magnetic braking catastrophe ?
Lietal (2011); see also Machida et al. (2074)

MHD simulation including Ohmic dissipation & Ambipolar diffusion,
B Il Angular Momentum (AM), sink cell = 6.7au
No disk forms due to very efficient removal of AM

by magnetic braking ?? S
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Figure 4. Density distribution (color map) and velocity field (white arrows) of the reference model (Model REF) in the meridian (left panel) and equatorial (right
panel) planes, at a representative time r = 6 x 10'?s. The highly flattened, dense equatorial structure is not a rotationally supported disk, but rather a magnetically
supported, nearly non-rotating pseudodisk. Also plotted in the left panel are poloidal field lines, with the same magnetic flux between adjacent lines. The color bars
above the panels are for log(p), with g cm™3 and cm as the units for p and length.




CARMA Survey of Protostars in Perseus
Tobin et al. (2015)

1.3mm dust
continuum

There ARE protostars
accompanied by
circumstellar disks

2 having r >100au disk
L J (L1448 IRS2; Per-emb-14)

3 marginally resolved
(L1448 IRS3B, 103282, L1448C)




3D-Simulation including Hall current
Isukamoto et al. (2015)

- non-ideal MHD (Ohmic dissipation, Ambipolar diffusion & Hall current)
- Initial configuration of AM & B in core-scales affects the disk evolution

AM & B are anti-parallel AM & B are parallel

formation of a large (r>20au) disk  formation of a small (r~1au) disk
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1.3mm Survey of Dust Polarization by CARMA
Hull et al. (2014); “TADPOL "-survey

® Pol. towards 30 cores and 8
regions forming stars at 2.5”

® including low-mass Class 0 & |

® Compare with z20” B-fields

with JCMT etc. as well as
small-scale outflow directions
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1.3mm Survey of Dust Polarization by CARMA

Hull et al. (2014); “TADPOL ”-survey
L1448 IRS 2 (Class 0); d=230pc L1527 (Class 0); d=140pc
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1.3mm Survey of Dust Polarization by CARMA
Hull et al. (2014); “TADPOL”-survey

(Results) A(B-field angles) vs. Pol. fraction

® A subset of objects (high pol.)
have consistent B-directions
IN both size scales, but
others do not.

desert ?

] source resides

II-EEI !I in uniform
T &
— = B-fields

® Outflows seem randomly 3 4 5 6 7 8 Prac(%)
aligned with B-fields at least
for high-Prac Sources

Outflows vs. small-scale B-fields

Outflows vs.
Small-scale B

- B-directions (small & large)

« Outflows

- AM (the axis of rotating disk)
are not always parallel

High-Psrac: random
Low-Psrac: outflows LB ?

0 15

projected angle between B and outflow

Cumulative Distribution Function




Recent progress (1): New large-scale maps
Ward-Thompson+ (2017); Pattle+ (2017); “BISTRO”-team

® JCMT + SCUBA-2/POL -2 B-field map in Orion based on
14”-beam at A=850um A=850pm Pol. image

® B 1 filament vs. B || filament

® B-field strength estimated by
Chandrasekhar-Fermi method

B equipartition of energy between
B-field & turbulence
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Recent progress (2): ALMA Pol. maps
Hull+ (2017)

B- flelds around Ser-emb8 d=436+9pc

B, |CMT

Iy Py rrr.
1 rroror=

85,000 AU [= 041 pe]
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_5 AL L8P/
- X 7,
J /

L

® 289243 0.35"x0.32” beam
15,000 AU [= 0.08 pc] 3500 AU

No hour-glass morphology (weakly magnetized cloud ?)




Recent progress (2): ALMA Pol. maps

Hull+ (2017)
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Nearby Star-forming regions with
S P | C A/ S AF ARl misalignment between B & AM may produce

Two types of outflows ? (Matsumoto+ 2017)

(a) Magneto-centrifugal wind (b) Spiral flow

® B-field structure in size-scale =
dense cores

®m change of field directions in
smaller size-scales (ALMA)...

- statistics on protostellar disks
- outflows’ structure

m field strengths A-dependence
- Chandrasekhar-Fermi method (red) do not show “polarization-minimum” at
- Other methods (e.g., Koch+ 2012) A~350pum (Gandilo+ 2016; Fissel+ 2016)
- need cross-check with Zeeman?

e 15. Schematic diag i yp of o ﬂ s:(a )
d nd (b) s p l ﬂ Tl t resent isoder
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BLAST observations in Vela C molecular clouds

® vs. Submm Single Dishes
m wavelength dependence
- dust characterization,

- alignment mechanism
(environmental effects, etc.)

24 Wavelength [pm]



Summary

® Small-scale structure of polarization in
protoplanetary disks has been detected by ALMA

B self-scattering and alignment (next talk)

® Nearby de

S

PICA/SA

A

oris disks will be important targets for

Al

B dust characterization
B most of them are difficult to detect pol. even by ALMA

® [ arge vs. small scale B-fields and their connection
with disk/outflow structure and their evolution

m B-Fie
H wave

d’s directions & strengths at various size-scales
ength dependence of polarization efficiency
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