Investigating planet formation by FIR and sub-mm polarization observations of protoplanetary disks

ALMA Band 7 (870 µm)

0.5

Kataoka et al. 2017

100 AU

-0.5 -1.0 -1.

(<u>Kataoka</u> et al. 2015)

Alignment

0.0

Akimasa Kataoka (NAOJ fellow, NAOJ)

T. Muto (Kogakuin U.), M. Momose, T. Tsukagoshi (Ibaraki U.), H.Nagai (NAOJ), M. Fukagawa (Nagoya U.), H. Shibai (Osaka U.), T. Hanawa (Chiba U.), K. Murakawa (Osaka-S.), Kees Dullemond, Adriana Pohl (Heidelberg)

Millimeter Polarization

- Old and new theories for explaining millimeter-wave polarization
 - 1. Alignment with magnetic fields
 - 2. Self-scattering of thermal dust emission
 - 3. Alignment with radiation fields
- Testing the theory with ALMA polarization observations
 - HD 142527 morphology of pol. vectors
 - HL Tau wavelength dependence

Dust is big in disks

Light source of scattering

self-scattering in an inclined disk

(disk, edge-on view)

Yang, Li, et al. 2016

See also <u>Kataoka</u> et al. 2016a

Conditions of dust grains for polarization

If (grain size) ~ λ/2π, the polarized emission due to dust scattering is the strongest

Grain size constraints by polarization

Multi-wave polarization \rightarrow constraints on the grain size

HL Tau - continuum

ALMA Partnership, 2015

HL Tau pol. - prediction

- i = 47° (ALMA Partnership 2015)
- The polarization vectors are parallel to the minor axis

Kataoka, et al., 2016a (see also Yang et al. 2016)

Polarization mechanisms

Total polarization fraction

We can extract the self-scattering components

HL Tau polarization

What can we do at MIR?

Current understandings

″

Science: scattering is efficient at MIR?

Porous

Case study: HL Tau

SPICA / SAFARI_Pol Fact Sheet A polarimetric camera with 3 simultaneous bands 100, 200 & 350 μ m on the same FOV : 2,6' x 2,6' @ 0,6 f# λ sampling

	100µm	200µm	350µm
Band edges	75—125µm	150—250µm	280—420µm
# of pixels	32 x 32 (x 2)	16 x 16 (x 2)	8 x 8 (x 2)
Pixel size	5" x 5"	10" x 10"	20" x 20"
Band centre beam FWHM	9"	18"	32"
PS sensitivity 5σ/1h/FOV (unpolarised)	21µЈу	42µЈу	85µJy
PS sensitivity in Stokes (Q,U) 5σ/1h/FOV (polarised)	30µЈу	60µЈу	120µЈу
PS sensitivity 5σ/10h/1deg ² (unpolarised)	0.16 mJy	0.32 mJy	0.65 mJy
PS sensitivity in Stokes (Q,U) 5σ/10h/1deg² (polarised)	0.23 mJy	0.46 mJy	0.92 mJy
Surface brightness sensitivity 50/10h/1deg ² (unpolarised)	0.09 MJy/sr	0.045 MJy/sr	0.025 MJy/sr
Sensitivity to map Stokes parameters (Q,U) at 5% level 50/10h/1deg ²	2.5 MJy/sr	1.25 MJy/sr	0.7 MJy/sr

Conclusions

- We have observed **polarization of HL Tau** with ALMA
 - 3.1 mm polarization vectors are dominated by explained by the grain alignment, while 1.3 mm pol. vectors by the self-scattering.
 - The maximum grain size is constrained to be \sim 70 μ m

(<u>Kataoka</u> et al. 2016a ApJ, <u>Kataoka</u> et al. 2017 ApJL)

- Possible science goals of MIR polarimetry of protoplanetary disks
 - HL Tau
 - Detection of MIR polarization of HL Tau -> porous dust aggregates
 - Non-detection of MIR polarization of HL Tau -> compact dust aggregates
 - Other disks
 - If scattering is observed, it would represents disks with small grains may be young. This is complementary with ALMA observations.
 - If we can detect polarization due to alignment of grains with B-fields, this would be the unique way to study the magnetic fields in disks

Dust opacity of protoplanetary disks

