Investigating planet formation by FIR and sub-mm polarization observations of protoplanetary disks

Figure 1. ALMA polarimetric observations at 3 mm (top,

where the red vectors show the *x*³ polarization morphology (i.e., \sim 3 polarization morphology (i.e., \sim vectors have not been rotated in the linearly proportional to *P*. The color scale shows the polarized intensity, which is $(K_{\alpha} + \alpha k_{\alpha})$ at al (2015) are shown for $\frac{1}{3}$ ($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, where $\frac{1}{3}$, where $\frac{1}{3}$, where $\frac{1}{3}$, $\frac{1}{3}$, *^I* is 44, 154, and 460 *µ*Jy bm¹ for 3 mm, 1.3 mm, and 870 *µ*m,

during its Continuum in the Continu \blacksquare and \blacksquare configuration was \blacksquare

 $\frac{1}{2}$ 92.5, 102.5, 102.5, 102.5, 102.5, 102.5 GHz with a bandwidth a band of 1.75 GHz each. The bandpass, amplitude, and phase were

operation. The correlator (Kataoka et al. 2015) (Tazaki et al. 2015) **Scattering Alignment**

Akimasa Kataoka (NAOJ fellow, NAOJ) calibrated by observations of J0510+1800, J0510+1800, J0510+1800, J0510+1800, J0510+1800, J0423-0120, J0423-01 and and the polarization of the polarization calibration was a set of the polarization was \sim

T. Muto (Kogakuin U.), M. Momose, T. Tsukagoshi (Ibaraki U.), H.Nagai (NAOJ), M. Fukagawa (Nagoya U.), H. Shibai (Osaka U.), T. Hanawa (Chiba U.), K. Murakawa (Osaka-S.), Kees Dullemond, Adriana Pohl (Heidelberg) performed by observations of J0510-1800. The reservations of Technical West Technical W reduced by the EA-ARC state by

Millimeter Polarization

- **• Old and new theories for explaining millimeter-wave polarization**
	- 1. Alignment with magnetic fields
	- **2. Self-scattering of thermal dust emission**
	- 3. Alignment with radiation fields
- ϵ ksom is ϵ **• Testing the theory with ALMA polarization observations**
	- HD 142527 morphology of *r* () • HD 142527 · =S - - - \overline{a} $\overline{}$ _
) K pholog $\frac{1}{2}$.
۲ • HD 142527 - morphology of pol. vectors \mathbb{R}
- HL Tau wavelength dependence

Dust is big in disks

Light source of scattering

self-scattering in an inclined disk Partnership: s evidence $\overline{1}$ \vert red d ϵ Brogan l r β \mathbf{L} $\overline{}$ in.
 r d
a \int i

i $\overline{}$ $\overline{\mathcal{C}}$ rin i
I ϵ $\ddot{\cdot}$ \mathbf{e} \ddagger $\overline{\mathbf{C}}$ For example, $\ddot{}$ polarization in the context of the context \mathbf{r} $\overline{}$ $\overline{5}$ S

scattering
Scattering e
e \overline{C} י
. \tilde{e} (disk, edge-on view) comes

Yang, Li, et al. 2016

See also Kataoka et al. 2016a

Conditions of dust grains for polarization

If (grain size) ~ λ/2π, the polarized emission due to dust scattering is the strongest

Grain size constraints by polarization Grain size constraints by polarization **Urain size constraints by polarization**

Multi-wave polarization → constraints on the grain size

HL Tau - continuum

ALMA Partnership, 2015

HL Tau pol. - prediction

- \bullet i = 47° (ALMA Partnership 2015)
- The polarization vectors are parallel to the minor axis

Kataoka, et al., 2016a (see also Yang et al. 2016)

Polarization mechanisms

Total polarization fraction

We can extract the self-scattering components

HL Tau polarization

What can we do at MIR?

Current understandings

 $\frac{H}{\epsilon}$

Science: scattering is efficient at MIR?

Porous

Case study: HL Tau

SPICA / SAFARI Pol Fact Sheet polarimetric camera with 3 simultaneous bands 100, 200 & 350 µm on the same FOV : $2,6' \times 2,6' \text{ } \textcircled{1}$ 0,6 f# λ sampling

Conclusions

- We have observed **polarization of HL Tau** with ALMA
	- 3.1 mm polarization vectors are dominated by explained by the grain alignment, while 1.3 mm pol. vectors by the self-scattering.
	- The maximum grain size is constrained to be \sim 70 μ m

(Kataoka et al. 2016a ApJ, Kataoka et al. 2017 ApJL)

- Possible science goals of MIR polarimetry of protoplanetary disks
	- HL Tau
		- Detection of MIR polarization of HL Tau -> porous dust aggregates
		- Non-detection of MIR polarization of HL Tau -> compact dust aggregates
	- Other disks
		- If scattering is observed, it would represents disks with small grains may be young. This is complementary with ALMA observations.
		- If we can detect polarization due to alignment of grains with B-fields, this would be the unique way to study the magnetic fields in disks

Dust opacity of protoplanetary disks

Akimasa Kataoka (NAOJ fellow) A N I ingle S idiqu R N A O J ith W J