# SPICA FIR Polarimetry for ISM and Transient Objects

K. S. Kawabata, Hiroshima University





#### Index

- Sensitivity of SAFALI\_Pol
- Extragalactic interstellar dust probed by Type Ia Supernovae observation (8 pages)
- Dust production in core-collapse SNe (3p.)
- Ejecta mass in kilo novae (3p.)
- Summary

# **Context of SAFARI\_Pol** ( $\sigma_P = 0.3\%$ , $T_d = 20K$ , )

- Planck mapped 850µm pol. of entire MW gal. where  $A_V > 4$  with ~5' resolution.
- ALMA performs high-reso. (~0.3") 450µm pol. mapping over 20" FoV where  $A_V > 100$ .
- JCMT and SOFIA perform Sub-mm and FIR pol. mapping for arcmin-sized clouds where  $A_V > 4$  with ~10" reso.

#### • SPICA/SAFARI\_Pol reaches

- pol. mapping  $1^{\circ} \times 1^{\circ}$  field with ~20" reso. where  $A_V > 0.01$ (?) within 1 hr.  $\leftarrow$  Magnetic field of HI region
- pol. of point-source of  $F_{\nu} > 0.1$  Jy within 1 hr

(  $F_{\nu} > 0.01$  Jy within 1 hr for  $\sigma_P = 1\%$  )

Observation of transient objects has a merit because measuring time variability is confusion-limit free!

# Extragalactic IS $B_{\perp}$ mapping





MHD simulation of structures with spiral arms. (Magneto-Jeans instability > swing-amplification or Parker instability; Kim 2004)

HIROSHIMA UNIVERSITY

 $\rightarrow$  Probing magnetic fields associated with GMCs and their formation

See also other talks in this meeting

 $x/L_x$ 

 $x/L_x$ 



### SPICA/SAFARI\_Pol for Extragalactic Interstellar dust probed by SNe Ia observation



#### **Normal SNe Ia and Polarization**

#### **SNe Ia = Cosmic Standard Candles**

Explosion of white dwarfs reaching Chandrasekhar's limiting mass (~1.4  $M_{\odot}$ )



Polarimetry: Probe for asphericity of photosphere

Past polarimetry suggests a normal SNe Ia gives little or no polarization in continuum (< 0.3%).

- $\rightarrow$  Photosphere is round; explosion is spherically symmetric.
- $\rightarrow$  SNe Ia are also `bright unpolarized' light source.
- $\rightarrow$  Observed polarization should be interstellar origin.



#### SN 2014J

 Appeared in M82 (d~4 Mpc)

Nearest SN la in recent quarter decade.

• Large extinction  $(E_V \sim 1.3)$ 

Opportunity to probe IS dust along the line of sight within the host galaxy.



M82銀河とSN 2014J (板垣氏撮影; Zheng+ 2014)

About 4<sup>th</sup> highly-reddened ( $E_V > 1$ ) SNe Ia: 1986G (4Mpc), 2006X (16Mpc). 2008fp (26Mpc)



#### **Opt-NIR Polarization of SN 2014J**



Larger polarization at bluer (p = 4.8% in B-band;  $\lambda_{max} < 0.4\mu m$ )

Constant PA of polarization in optical through NIR (paralell to dust lane)

No time variation  $\rightarrow$  Non circumstellar origin



#### **Empirical laws of MW ISP and extinction**

• Serkowski law

$$p(\lambda) = p_{\max} \exp\left[-K \ln^2\left(\frac{\lambda_{\max}}{\lambda}\right)\right]$$

- Maximum polarization efficiency  $p_{\max} \le 3 \times E_{B-V}$   $E_{B-V}$ : color excess
  - Serkowski-Whittet law

 $R_V = (5.6 \pm 0.3) \lambda_{\max}(\mu m)$  $R_V = A_V / E_{B-V}$ 

• Mie theory (for cylindrical grain)

 $\lambda_{\max} \sim 2\pi a_{\text{eff}}(n-1)$ 

 $a_{\rm eff}$ : dust radius

Small  $\lambda_{max}$  indicates small  $\lambda_{max}$  and  $a_{eff}$ 



Figure 4.7. Interstellar linear polarization curves for two stars with different values of the wavelength of maximum polarization. Top: HD 204827 (full circles,  $\lambda_{max} = 0.42 \ \mu m$ ); bottom: HD 99872 (open circles,  $\lambda_{max} = 0.58 \ \mu m$ ). Observational data are from Martin et al (1999) and references therein. Also shown are empirical fits based on the Serkowski law: VIR-optimized fit (broken curve); VUV-optimized fit (dotted curve); compromise fit (full curve).



# **Other Highly-Reddened SNe la**



 $\lambda_{max} \sim 0.43 \mu m$  for SN 1986G (Hough+ 1987)  $\lambda_{max} \sim 0.35 \mu m$  for SN 2006X (Patat+ 2009)  $\lambda_{max} < 0.4 \mu m$  for SN 2014J (KK+ 2014) Typical MW ISP:  $\lambda_{max} = 0.54 \pm 0.06 \mu m$ 

(Serkowski+ 1975; Whittet+ 1992)

HIROSHIMA UNIVERSITY

Small  $R_V$  is confirmed independently by analyses of SED. Commonly small  $\lambda_{max}$  (and therefore small  $R_V$ ) for extragalactic ISP... Is this really common?



# Including mildly-reddened SNe

#### 19 SNe la polarization spectra (VLT/FORS; Zelaya+ 2017)



Commonly high pol. efficiency and small  $R_V$  (and  $\lambda_{max}$ )  $\rightarrow$  Adopting mean MW values to extragalaxies is problematic.





(Zelaya+ 2017)



- SPICA/SAFALI can see ISM along multi lines of sight within an extragalaxy (in contrast to single los for SN observation).
- Measuring FIR polarization of extragalactic ISM may directly see thermal emission of aligned dust grains.
- Comparing polarization efficiencies near the reddened SN site in the host galaxies, diagnosing origin or universality of small R<sub>V</sub> dust in extragalaxies



# SPICA/SAFARI\_Pol for Dust production in core-collapse SNe ( $M_{initial} \ge \sim 10 M_{\odot}$ )



### **MW Interstellar Dust**

#### Estimates of dust production rates in MW disk

| Stellar type  | C or O | <b>Dust production</b><br>( $10^3 M_{\odot}$ /year) |
|---------------|--------|-----------------------------------------------------|
| O-rich AGB    | 0      | 3                                                   |
| C-rich AGB    | С      | 3                                                   |
| Supernovae    | both?  | 1 (?)                                               |
| M giants      | 0      | 0.2                                                 |
| M supergiants | 0      | 0.1                                                 |
| WC stars      | С      | 0.06                                                |
| Novae         | both   | 0.02                                                |

These are simply from rates of mass loss and their occurrence (e.g., constant dust to gas ratio), but it is gradually being confirmed for young supernova remnant.

It is still unclear how SNe produces dust grains in their ejecta.

#### 🎒 HIROSHIMA UNIVERSITY

#### Dust Producing SNe (only a few samples so far)



Observed hot dust in dusty SN amounts only  $\sim 10^{-3} M_{\odot}$  at most. ( $\Leftrightarrow 0.1 - 1M_{\odot}$  in evolved galactic SNRs) (e.g., Nozawa+ 2015) Most of produced dust should be cooler or condensed later. (Time scale is months~year for SNe IIn.  $\Leftrightarrow$  SPICA monitoring )

#### 

# SPICA/SAFARI\_Pol obs

Accessible for possible dust condensation in normal corecollapse SNe



Assuming BB-like SED,  $\sim 10^{-5} M_{\odot}$  hot dust ( $\sim 1500$ K) gives  $\sim 0.01$  mJy at 50 Mpc. ( $\sim a$  dozen SNe nearer than 50 Mpc per year.)

Additional cooler dust may brightening the SN.

 $\rightarrow$  More reliable estimation of dust mass from SED to FIR by SPICA photometry

 $\rightarrow$  SAFALI\_Pol polarimetry may probe whether the cooler dust grains are pre-existing or newly formed. (If polarized, they would be pre-existing or quickly aligned after condensation).



# SPICA/SAFARI for Ejecta mass in kilo novae

### **Kilo Novae**





Decay energy of radioactive heavy elements  $\rightarrow$  Brightening the ejecta

# GW170817: First `Bright' GW event



#### Sekiguchi 2017



Tidal disruption may give only  $\sim 0.01 M_{\odot}$  ejecta in NS merger (possibly depending on mass ratio of the BNS).

# Additional post-merger ejecta or wind ejecta is necessary.



### **Dust in Kilo nova?**



Ejecta primarily consists of heavy elements (r-process neutron capture).  $\rightarrow$  may condense into dust grains.

May be visible by SPICA/SAFALI-PoI (similar context with dusty SNe)  $\rightarrow$  Independent estimation of ejecta mass

 $\rightarrow$ Diagnosing FIR spectrum itself may be essentially interesting.



## Summary

- Opt/NIR polarimetry for reddened SNe Ia suggest polarization/absorption properties in extragalaxies are commonly different.
  SPICA may contribute to understand details
- SPICA may outline the dust condensation process in the ejecta core-collapse SNe
- SPICA may also outline the production of dust consisting of pure r-process elements in kilo novae.