天文観測衛星における姿勢系

3 Dec, 2014 @可視赤外線観測装置技術ワークショップ 巳谷 真司 (Mitani Shinji)

姿勢 ≠ 指向

姿勢・・・姿勢センサ(ジャイロ、STT)が基準とする座標からの変動 指向・・・観測装置が基準とする座標からの変動

周波数 (オーダー)	低周波領域 0.01 Hz以下	中間周波数領域 0.01 – 10 Hz	高周波領域 10 Hz以上
姿勢角と指向角	姿勢角=指向角	姿勢角~指向角	姿勢角 ≠ 指向角
/# *	全体として剛体とみなせる	搭載機器が柔軟構造に支え られる場合は、「姿勢角≠指	構造を伝達した局所的振動 が擾乱の主成分
调石		向角」	この周波数帯域では、指向
	指向制御がなされる場合「姿勢	9角=指向角」でなくてよい	角は局所的な変形による

指向安定度、姿勢安定度、位置安定度の定義

指向安定度・姿勢安定度・アライメント変動の要因と 構成

主要座標系間の関係(指向、姿勢、アライメントの概 念と決定、制御)

- 科学目的:ビッグバンから生命の誕生にいたる宇宙史の中で、鍵となる重要現象・過程の解明
- 赤外線天文衛星:口径3m級の大型望遠鏡。放射冷却と機械式冷凍機を組み合わせて望遠鏡と観測機器全体を-267°C(6K)以下に冷却し、中間・遠赤外線において高感度、高解像度観測を行う。
- 軌道:太陽-地球系のラグランジュ点L2(地球から150万km)周りのハロー軌道
- 国際協力ミッション:日本が主導し、ESA 等との連携で衛星システムを構築
- ロケット: H-IIA(204/5S)
- 衛星質量:3.7 ton (打上時)

SPICA: Space Infrared Telescope for Cosmology and Astrophysics 「宇宙論及び宇宙物理学のための宇宙赤外線望遠鏡」の略称。

ミッション要求(指向精度・指向安定度要求)

表リスク低減フェーズ(RMP)#2時点での指向要求※指向要求を決める典型的な観測モードのみ

FPI Mode	APE Point [arcsec, 3σ]	RPE Point [arcsec, 3σ]
MCS-MRS-S	0.56	0.56 (0-P, 10 min)
SAFARI	12.0	0.5 (0-P, 20 min)
SCI	0.06 (0-P)	0.06 (0-P, 20 min)

APE: 絶対指向制御精度(Absolute Performance Error) RPE: 指向安定度 (Relative Performance Error) [3]

[3] ESA Pointing Error Engineering Handbook (ESSB-HB-E-003)、2011

指向要求→システム設計(姿勢制御SS構成)

Herschel	Herschel, 2009	Euclid, 2020	SPICA, 2020~
APE(制御誤差)要求 と誤差主要因	APE < 3.7" (1ơ) STT性能(バイアス0.8") 熱的アライメント変動(0.6")	APE < 2.5" (1σ) FGS (<0.6" 3σ)	APE < 0.56"(3ठ) FAS (<0.05"0-P) 機械式冷凍機、ホイール擾乱
RPE(安定度)要求 と変動主要因	RPE < 0.25" (1ơ) over 60s STTノイス [゙] (NEA 1") ホイール制御誤差 (0.047")	RPE < 0.025" (1ơ) over 585s FGS (<0.03″ 3ơ) コールドガスジェット姿勢制御	RPE < 0.56" (1ơ) over 1,200s FAS (<0.036" 3ơ) 機械式冷凍機、ホイール擾乱

TTMを搭載するSCIは除く

恒星センサ(STT)の熱的アライメント変動 機械式冷凍機、ホイール微小擾乱による高周波変動	観測装置と同一焦点を見るFAS(Focal Attitude Sensor)*搭載
機械式冷凍機、ホイール微小擾乱による高周波変動	* EuclidではFGS(Fine Guidance Sensor)と呼称
	機器発生擾乱の低擾乱化 伝達経路を遮断する受動アイソレータ、軌道上分離トラス (磁気ホイール、コールドガスジェットによる姿勢制御)

L2点:熱安定 → 熱アライメント変動も安定

SPICAを配置するL2点では、熱アライメント変動の影響も小さい

アライメントの考え方

- 前提·制約条件
 - 低CTEの材料をメインの構造材料として使用(極低温におけるCTE(Coefficient of Thermal Expansion)は極めて小さい(~10⁻⁹ K⁻¹))
 - 構造全体として(接合部等も含んで)変形しにくい, or, 熱変形を打ち消すような工夫
 - 衛星システムの温度安定性もよい(<1K)
 - 低温でアライメントは安定している
 - BMとSIAの間のアライメントは変動する
 - 打ち上げ後のキャリブレーションが必須
 - 姿勢変更にともなうアライメント変動がありうる
- 対応
 - SIA内に FAS(Focal Attitude Sensor: 焦点面姿勢センサ)を導入することにより、
 指向精度要求を満たすことが可能になる
 - BM内のセンサーのみでは、SIA指向精度要求を満たすことが困難

設計結果 FAS配置例

初期フェーズにおける擾乱管理

概念・基本設計フェーズ

[1] JAXA、擾乱管理標準(JERG-2-152A)、2012

SPICA軌道上コンフィギュレーション

SPICA軌道上コンフィギュレーション(詳細)

メイントラス (軌道上分離トラス)

制御帯域割り当て(制御系設計)

擾乱管理プロセス

[4] JAXA、擾乱管理マニュアル(JERG-2-152-HB101B)、2012

発生擾乱の低減:低擾乱ホイール

	Type L-A	Туре М-А	Туре Ѕ	
Max. Momentum [Nms]	30-80	10-30	5-10	
Max. Torque [Nm]	$\ge 0.2@6$ ($\ge 0.3@~$ $\ge 0.4@~2$	$\geq 0.2@6000$ rpm ($\geq 0.3@\sim3500$ rpm, $\geq 0.4@\sim2000$ rpm)		
Mass [kg]	$\leq 11.5@80$ Nms	\leq 9.1@30Nms	\leq 5.22@10Nms	
Dimension [mm]	$\leq \Phi 366 \times 148$	$\leq \Phi 280 \times 148$	$\leq \Phi 224 \times 100$	
Power Consumption [W]	Steady: <35 Peak:<250@0.2	Steady: <15@5000rpm Peak: <69@0.06Nm, 5000rpm		
Disturbance Force [N]	< 2[N] @f=> < 2*10 ⁻⁴ *f ² [N](< 0.02[N] (< 2[N] @f=>100-200Hz < 2*10 ⁻⁴ *f ² [N]@10 <f<=100hz < 0.02[N] @f<=10Hz</f<=100hz 		

Туре	Mission	launch year
Type L-A	Next ISAS ASTRO satellite series; ASTRO-H	in 2015
Туре М	Next GCOM satellite series; GCOM-C1	in 2016
Type S	Super Low Altitude Test Satellite (SLATS)	in 2016
Туре М-А	Next GOSAT satellite series; GOSAT-2	in 2017

A

[5] Izawa et al., New Reaction Wheel Assembly Series with High Reliability and Low Disturbance, 2014

発生擾乱の低減:低擾乱ホイール

Waterfall plots of disturbance force/torque

- It is noted that the magnitude of disturbance force/torque is amplified by structural resonance to max. 1.54N/0.39Nm at about 200Hz at speed of 1070rpm.
- The structural resonance is well known as "Rocking Mode" and involves rocking a wheel around a orthogonal axis against a rotation axis.

Note; Ω *is wheel speed frequency*

Waterfall Plots of the Disturbance Force/Torque at initial function

発生擾乱の低減: 冷凍機擾乱低減機構

2ST擾乱測定コンフィギュレーション

251 逻乱测足和关例							
		コールドヘッド側			コンプ	レッサ側	
Test	周波 数Hz	Fx Nrms	Fy Nrms	Fz Nrms	Fx Nrms	Fy Nrms	Fz Nrms
1-1	15	1.17	0.38	0.03	0.17	0.53	0.01
1-2	15	0.07	0.56	0.05	0.02	0.56	0.02

2ST擾乱測定結果例

Test 1-1: 位相調整なし (AKARI相当の駆動条件) Test 1-2: 1次擾乱が最小となる位相差に調節

- 冷凍機擾乱低減機構
 - コンプレッサ/コールドヘッド
 - 対向運動する稼動部の駆動電
 圧位相を調節することで発生擾
 乱を低減できることが可能
 - 擾乱(駆動方向)を1/10に
- ・ さらなる低減技術
 - 複数冷凍機の完全同期制御(可能)

2段スターリング冷凍機 ・駆動周波数15Hz ・構成:コンプレッサ/ディスプレーサ/ ★アクティブバランサ(擾乱低減機構)

4K /1K JT冷凍機コンプレッサ
 ・駆動周波数52Hz / 52Hz(TBD)
 ・構成:コンプレッサ(2台 / 3台)
 ★対向型配置による擾乱抑制

擾乱伝搬経路: 軌道上分離機構の配置

擾乱伝搬経路:擾乱低減効果の予測(固有値解析)

共振周波数 [Hz]	方向
1.14	Z軸(光軸)周り回転
1.48	Y軸周り回転
1.55	X軸周り回転
2.73	Z軸方向並進
4.82	X軸方向並進
4.84	Y軸方向並進

Z X

Output Set: Mode 27, 4.837351 Hz Deformed(0.272): Total Translation

- 衛星全機の有限要素モデルに試験検 証済みの分離バネモデルを組み込ん だモデルを使用
- NASTRAN固有値解析の結果を図示
- 指向系からの要求(1-7Hz)を満足する

Output Set: Mode 27, 4.837351 Hz Animate(0.272): Total Translation

擾乱伝搬経路:擾乱低減効果の予測(伝達関数)

- 機械式冷凍機の最低駆動周波数15Hzにおける振動伝達率を評価(モード重畳法)
- 分離バネとMCSアイソレータを組み込んだ有限要素モデルを使用
- 剛体モデルと比較して1桁以上の振動伝達率低減が期待される。

(補足、というかこちらがメイン)断熱効果の予測

擾乱伝搬経路:冷凍機台座アイソレータ設計

擾乱伝搬経路:アイソレータBBM試作結果

Figure: Picture of the SPICA isolator brassboard model

Table: Isolator design requirements compliance

Frequency (112)

Specification	Design requirement	BBM result	Test result
Ka	1576.1 – 2626.9 N/m	1714.5 N/m	Compliant
K _b	1926.4 – 2977.2 N/m	3152.3 N/m	Conditionally compliant
C_a	366 N/(m/s) +/- 7.5%	297.7 N/(m/s) @–46C	Conditionally compliant
Stroke	2 mm pull-down + launch load	+/–3.3 mm	Compliant
Temperature range	Operational: –65 to –10 C	-65 to +23 C tested	Compliant
	Survival: –65 to +60 C		
Length	<203.2 mm	200.7 mm measured	Compliant
Strut mass	< 2 kg/isolator	0.76 kg	Compliant
Fluid viscosity	< 30 cS	5 cS	Compliant

擾乱解析結果:全冷凍機擾乱による指向変動

軌道上分離トラス、冷凍機台座アイソレータ試作結果を反映したフル有限要素モデル (FEM)を用いた擾乱解析結果

195 Hzで冷凍機台座と 構造共振を起こしている →台座設計を次フェーズで 見直すことで回避可能

Figure: Power spectrum of the pointing error by mechanical coolers

擾乱解析結果: 姿勢ホイールによる指向変動

同様に姿勢制御ホイール擾乱による変動結果。十分な高周波要求マージン(10倍)を持た せるには、ホイールにもアイソレータが必要。さらに回転数運用制限(<2400RPM)も必要

	Remarks	$ heta_z$ [mas, 0-P]	$ heta_y$ [mas, 0-P]	$ heta_x$ [mas, 0-P]
	with isolator, tenfold margin	0.20 (118.4 Hz)	15.2 (84.1 Hz)	10.8 (55.1 Hz)
12	& Limit (Max. 2,400 RPM)	9.6×10 ⁻³ (<40 Hz)	0.98 (<40 Hz)	2.4 (<40 Hz)
	Allocations (tentative)	10	10	10

指向を直接制御: Tip-Tilt Mirror (TTM) 設計

[8] Mitani et al., Precision pointing control for SPICA: risk mitigation phase study, 2014

指向を直接制御: TTM極低温動作試験結果

Figure: Picture of TTM BBM mechanism for MCS and SCI

Figure: Cryogenic chamber for the TTM mechanism test [9]

Table: TTM design requirements compliance

Specification	Requirement	BBM result	Test result
Dissipation power	1 mW per 2-axis @4.5 K	4.4 mW per 1-axis @ 10 K	Non-compliant
Pointing error (mechanical)	0.15 arcsec (3 σ)	< 1.8 arcsec	Conditionally compliant
Frequency response	1 Hz	1 Hz	Compliant
Mechanical coverage range	0.025 deg, P-P	0.016 deg, P-P	Non-compliant
Operational temperature	4 to 10 K	< 10 K	Compliant
Mirror size	50 × 75 mm	50 × 75 mm	Compliant
Drive mechanism envelope	$50 \times 50 \times 100 \text{ mm}$	ϕ 50.1 × 104.92 mm	Conditionally Compliant
Weight	600 g	< 420 g	Compliant

It was confirmed that TTM BBM functioned properly, even at an environment below 10 K.

10K以下で動作するTTMを開発した

[9] Enya et al., Prototype-testbed for Infrared Optics and Coronagraphs (PINOCO), 2012

検証計画: 低周波擾乱の高精度測定

単一擾乱(周期ω、振幅トルクTd)が及ぼす指向変動角Δθ

$$\Delta heta = rac{T_d}{I_s \omega^2}$$
 Is: 衛星の慣性モーメント

- Δθの上限が指向要求から決まるとき、ωが小さくなるほど、許容できるTdの値が小さくなる →Tdの検出精度が必要
- 例えば、ω/2π=0.01 Hzでは、10μNmレベルの検出感度が擾乱測定装置に必要
- ・ この問題意識は、Δθが小さく(60mas)、安定度規定時間が長い(20min)特徴を持つSPICAミッションから初めて提起された。
- 対策には、擾乱測定装置の検出限界を向上させる → 高精度化(研究項目として実施中)

図 空気浮上式擾乱測定装置(変位計測方式)

さらに将来の指向安定制御技術

非機械式ジャイロ

図 3 「ひので」SOT の相関追跡装置(CT)が出力する指 向誤差時系列データから得られたパワースペクトル.

- 機械式ジャイロの高周波擾乱
 - 冷凍機、ホイールの次に影響が大きい
- 「ひので」の例 [10]
 - 相関追跡装置(Correlation Tracker): 580Hzサンプリングの高速CCDカメラを用いて、軌道上指向誤 差評価
 - 100Hzより高周波域でパワースペクトル上に多数のピーク。機械式ジャイロやホイールで発生した 擾乱が、望遠鏡構造と共振することで発生
 - 高周波域における共振によって生じる指向誤差は0.01-0.02 arcsec (0-P)

- [10] 勝川、ひので衛星の軌道上指向安定度評価とSOLAR-Cへ向けた課題、2010
- 32

非機械式ジャイロ

磁気軸受ホイール

■ 冷凍機の擾乱抑制実験結果(FY21) コンプレッサのピストン駆動(52Hz)による擾乱を抑制

微小推力コールト゛カ゛スシ゛ェットスラスタ

Future Missions and Systems

Euclidシステム解析の例 System Performance – AOCS

Fine Guidance Sensor integrated into VIS focal plane

- Bandwidth: 0.5 Hz 1 Hz
- Performance: sensor noise not performance-limiting

Control loop design for science mode AOCS

- Bandwidth: ~0.1 Hz ... set by low thrust of cold gas system
- Relies on sensor fusion of FGS and IMU

Fig 12: MPS thruster (left), MPS thruster locations (for one branch) on sun facing side of spacecraft (right)

図 GAIAで実証したMicro-Propulsion System (MPS)スラスタ: 推力0.5mN ([12] Chapman, 2008)

- IMU (Astrix-200, 10 Hz bandwidth) propagates attitude to achieve higher attitude rate
- Pointing requirement (APE < 25 mas) can be safely fulfilled

[11] Wallner et al., EUCLID Mission Assessment Study - ESA Science & Technology, 2009

PLM-BM間非接触制御 一空間安定制御 一

Non-contact actuator [13] Trankle et al., 2005 [14] Dewell et al., 2005

Beyond JWSTの例~究極の指向安定、熱遮断

Figure 10. ATLAST 9.2 m aperture Engineering Reference Design concept.

[15] Pedreiro, Spacecraft Architecture for Disturbance-Free Payload, 2003

[16] Redding, et al., Beyond JWST: Performance requirements for a future large UVOIR space telescope, 2014

- 将来の天文観測衛星の姿勢系として、SPICAの指向設計事例を紹介した
- センサの熱アライメントを低減するには、適切な軌道の選択と、同一焦点面にガイダンスセンサを配置することが効果的
- 低擾乱を実現する上では
 - 観測装置の擾乱感受性
 - 擾乱伝搬経路
 - 擾乱発生機器
- の3つをコントロールすることが重要
- SPICAでは、これら3つの観点に渡る擾乱低減設計活動を行った。特に、軌道上分離トラスやアイソレータの試作評価等のハードウェア試作に取り組み、RPE要求を満足できる見込みを得た
- また、指向軸を直接制御する機構が高安定化に有効である。TTMを試作し極低温環境下(<10K)での動作に成功したが、発熱量に対して更なる低減対策が求められる
- さらに将来の指向安定化技術の一例として、非機械式ジャイロ、磁気ホイール、MPSスラスタ、非接触アクチュエータを紹介した

- 1. JAXA, 擾乱管理標準 (JERG-2-152A), 2012
- 2. JAXA, 指向管理標準 (JERG-2-153), 2014
- 3. ESA, ESA Pointing Error Engineering Handbook (ESSB-HB-E-003), 2011
- 4. JAXA, 擾乱管理マニュアル (JERG-2-152-HB101B), 2012
- 5. Izawa et al., New Reaction Wheel Assembly Series with High Reliability and Low Disturbance, GNC2014, 2014
- 6. 水谷他,赤外線天文衛星SPICAのミッション部冷却システムの構造設計,第58回宇科連,2014
- 7. Mitani et al., Spica Micro-vibration Control System Design for Precision Pointing Stability, GNC2014, 2014
- 8. Mitani et al., Precision pointing control for SPICA: risk mitigation phase study, SPIE 9143, 2014
- 9. Enya et al., Prototype-testbed for Infrared Optics and Coronagraphs (PINOCO), SPIE 8442, 2012
- 10. 勝川他, ひので衛星の軌道上指向安定度評価とSOLAR-Cへ向けた課題, 第54宇科連, 2010
- 11. Wallner et al., EUCLID Mission Assessment Study ESA Science & Technology, 2009
- 12. Chapman et al., The Gaia Attitude & Orbit Control System, GNC2008, 2008
- 13. Trankle et al., Disturbance Free Payload Flight SystemAnalysis and Simulation Methods, AIAA, 2005
- 14. Dewell et al., Precision Telescope Pointing and Spacecraft Vibration Isolation for the Terrestrial Planet Finder Coronagraph, SPIE 5899, 2005
- 15. Pedreiro, Spacecraft Architecture for Disturbance-Free Payload, AIAA, 2003
- 16. Redding, et al., Beyond JWST: Performance requirements for a future large UVOIR space telescope, SPIE 9143, 2014

