超高感度赤外線衛星SPICAによる宇宙進化史の解明 金田英宏(名古屋大)、芝井広(大阪大)、山村一誠、小川博之、中川貴雄、 松原英雄、山田亨(ISAS/JAXA)、尾中敬(明星大)、河野孝太郎(東京大)、 他SPICAチームメンバー

Outline: 1. Current status of SPICA 2. SPICA primary science goals 3. Science observation plans 4. Schedule 5. Summary

1/25

1. Current status of SPICA

SPICA, proposed as an ESA-JAXA collaboration mission

- Telescope: 2.5 m, < 8 K with mechanical coolers</p>
- **> Wavelength range** : 10 350 μm
- Orbit : Sun Earth L2 Halo
- Launcher: JAXA H3 rocket
- Launch year: 2029 ~ 2031 (to be discussed with ESA)
- Lifetime: 5-years goal (cryogen-free architecture)

JAXA : passed MDR as a strategic Lclass mission candidate (#3 slot), and started Phase-A activity (2016 ~) ESA : selected as one of the three CV M-class mission candidates, and started Phase-A activity (May 2018 ~)

New SPICA: Technically more feasible, financially more affordable

Specifications

International workshare plan

JAXA & ESA as major partners for each other.

Netherlands

France

Spain

SPICA focal-plane instruments

Mid-infrared instrument

SMI: 17–36 µm, *R*~100 spectrometer & 10'x12' camera 18–36 µm, *R*~1200–2300 spectrometer 10–18 µm, spectroscopy at *R*~30000

Far-infrared instruments > SAFARI: 34–230 μm spectroscopy at R~300 & 11000

B-BOP: 70, 200, 350 µm imaging polarimetry

2. SPICA primary science goals

IR spectral diagnostics with SPICA

Upper: I.P. for key IR fine-structure lines (adapted from Spinoglio & Malkan, 1992). *Lower:* excitation temperature of molecular transition, spectral features from PAHs, H₂O ice, silicates.

(1) Physical understanding of galaxy & SMBH evolutions

(1) Physical understanding of galaxy & SMBH evolutions

8/25

The physics governing galaxy & SMBH evolutions with IR spectral diagnostics
> Dust bands → SMI large spectral surveys, overall picture
> Gas lines → SAFARI high-sensitivity spectroscopy, accurate

Unbiased large spectroscopic surveys by SMI/LR-CAM

CAM (30-36 μm) is operated simultaneously.

240,000 at 34 μm with CAM

Expected results of SMI/LR survey (10 deg² in 500 hrs) Based on the result of HK+17 white paper, updated with the latest SMI specifications

PAH galaxy spectra

Direct detection # + Stacking detection #

	$\operatorname{Redshift}$										
$\log(L_{ m IR}/L_{\odot})$	0.5 - 1	1 - 1.5	1.5 - 2.0	2.0 - 2.5	2.5 - 3.0	3.0 - 4.0	> 4.0				
13.00 -	1	19	91	246	462	230	157 + 63				
12.50 - 13.00	73	648	1592	2495	3083 + 7	1281 + 99	$\frac{337}{139}$				
12.25 - 12.50	321	1825	3009	3511 + 58	2796 ± 492	467 + 289	94				
12.00 - 12.25	1138	4446	5519 <mark>+ 85</mark>	4115 + 791	2070 + 1192	69 + 319	35				
11.75 - 12.00	2969	8185 + 23	6508 + 1021	2598 + 1859	1197	125	11				
11.50 - 11.75	6063	10425 + 552	4314 + 2525	1542	335	33	3				
11.00 - 11.50	22907 ± 1050	9522 + 4348	330 + 3173	503	92	7	0				
10.50 - 11.00	1(251 + 8213)	1504	206	21	0	0	0				
- 10.50	387 + 4245	97	3	0	0	0	0				
Total	50111 + 14108	35070 + 6524	21364 + 7013	12965 + 4774	8412 + 3315	2048 + 871	494 + 344				

AGN spectra

$\operatorname{Redshift}$										
$\log(L_{\rm IR}/L_{\odot})$	0 - 1	1 - 1.5	1.5 - 2.0	2.0 - 2.5	2.5 - 3.0	3.0 - 4.0	> 4.0			
13.00 -	2	15	60	157	310	185	394 + 15			
12.50 - 13.00	37	276	710	1240	1808	1008 + 42	643 + 295			
12.25 - 12.50	130	701	1264	1727	1798 + 118	565 + 187	29 + 220			
12.00 - 12.25	434	1661	2317	1936 + 231	1073 + 441	104 + 301	120			
11.75 - 12.00	1114	3035	2451 + 283	742 + 540	54 + 516	175	50			
11.50 - 11.75	2293	3935 + 184	706 + <mark>691</mark>	21 + 426	211	70	14			
11.00 - 11.50	9014 + 320	2255 + 1603	61 + 586	198	89	24	1			
10.50 - 11.00	7775 + 1723	8 + 394	53	10	0	0	0			
-10.50	5409 + 2216	24	0	0	0	0	0			
Total	26208 + 4259	11887 + 2206	7568 + 1613	5824 + 1405	5042 + 1376	1862 + 799	1066 + 715			

Stacking spectra of fainter galaxies with known redshifts. Detection with S/N > 7 (red)

Revealing the relationship between star-formation activity, metal-dust enrichment and nuclear activity

Herschel 70 µm

ISM reservoirs: CO-dark gas, diffuse gas with HD lines and [CII]

With the sensitivity of 5×10^{-20} W m⁻², GMCs of 10^{6} - 10^{7} M_{Sun} with T = 20-30 K are detectable out to 10 Mpc distance. In dwarf galaxies, gas temperatures are expected to be higher.

SPICA is extremely sensitive to diffuse warm gas. **10 min for 1'x1'** would reach $N_H \sim 10^{18} \text{ cm}^{-2}$. Also uniquely suited to probe extraplanar material.

Tracing cosmological evolution of PAH and dust in galaxies

SPICA's spectroscopy of high-z objects provides the opportunity to detect PAHs and ices from the most distant galaxies ever observed. Egami et al. 2018 white paper

Dust studies: AKARI, Spitzer (low z) JWST (intermediate z) > SPICA (high z)

Search for dust in very high-z BHs (synergy with SKA) ^{14/25}

A very small amount (~10 M_{\odot}) of circum-nuclear dust at z = 15 is detectable.

characterization of the dust with SAFARI \rightarrow properties of Pop III stars

(2) Understanding the fundamentals of star & planetary formation

Formation of Galactic filaments : Polarimetry (B-BOP), shock-tracing (SMI)

Molecular gas measurement : HD, H₂
 Gas dispersal, "3-D real snow line" : velocity-resolved H₂, H₂O (multiple)

SPICA: A future revolution in FIR polarimetric imaging

Thanks to a cooled telescope, SPICA-POL = B-BOP will be 2-3 orders of magnitude more sensitive (4-6 orders of magnitude faster) than other far-IR/submm imaging polarimeters

B-BOP will deliver wide-field 70–350 µm images of polarized emission (Stokes Q, U) with a resolution, S/N ratio, and intensity/spatial dynamic ranges comparable to Herschel images in total intensity (I).
Ph. André - SPICA 2019 – Crete – 21 May 2019

16/25

IR spectroscopy: gas, dust, ice evolution in planetary system^{\$7/25}

Velocity-resolved studies of gases in PPDs with SMI/HR ^{18/25}

H20

C2H2

NH3

HCN

NZ.

14.1

SPICA/SMI (R=30,000)

140

Wavelength (μ m)

Spectral range of 10–18 μm contains not only H₂ and atomic lines but also numerous emission bands of major C-bearing molecules, HCN, C₂H₂, and CO₂, as well as lines of H₂O and OH.

<u>Velocity-resolved</u> H₂, H₂O, OH, HCN, CO₂, C₂H₂ lines

- \rightarrow gas dispersal processes
- \rightarrow 3-D "real" snow line

resolving

0.003

0.0025

0.002

0.0015

0.001

0.0005

-40

-20

0

V (km/s)

20

Flux (Jy)

molecular bands

 \rightarrow C/O ratio distribution at <~I–2 AU in disks

CO

CO₂

H₂O

OH

CH₄

 C_2H_2

NH₃

HCN

- N2

13.9

Mineralogy in disks & its relation to our solar system ^{19/25}

Cosmology survey (2000-3000 debris disks; HK+17) + mini surveys

Exoplanetary atmospheres at high spectral resolution ^{20/25}

From A. Sozzetti et al.'s talk at SPICA2019 Crete

- * At R > 20,000, molecular bands are resolved in a dense forest of individual lines
- * Strong Doppler effects due to orbital motion of the planet (up to >150 km/s).
- Moving planet lines are distinguished from stationary stellar lines.
- Molecules are detected by cross-correlation with libraries of synthetic spectra

Origins of organic matter and water (up to z = 10)

Solar System science with SPICA

21/25

Evolution of material leading to the formation of habitable worlds

- Characterization of the early solar system comets
 Spectroscopy of comas, High-R 10-18 μm (gas tail) and low-R 17-230 μm (dust trail).
 D/H ratio of comas to quantify the original water characteristics.
- Characterization of interplanetary dust particles Low-R spectroscopy of dust bands in the Zodiacal emission toward various directions.
- The outer solar system: planetary atmospheres High-R 10-18 µm spectroscopy, 10 times the resolution of VOYAGER/IRIS, CASSINI/CIRS and MEX/PFS to study the molecular composition of planetary atmospheres.
- The outer solar system: trans-Neptunian objects 100s of TNOs (D < 100 km) to measure sizes, albedos, infer their internal composition.</p>

➢ lifetime: 5-year goal → mostly as Space Observatory, Open Time

Reference mission scenario (breakdown of 11000 hours)

- > 100,000 galaxy spectra with SMI surveys: 600 hrs
- \geq 1300 galaxies at z = 0.5 10 with SAFARI: 4300 hrs
- > 100 deg² photometry survey with SMI/CAM (& B-BOP): 200 hrs
- > 500 nearby galaxies with SMI & SAFARI: 1700hrs
- > 500 deg² polarimetry imaging of Galactic ISM with B-BOP: 500 hrs
- > 2,700 PPDs with SMI, SAFARI: 2800 hrs
- > 2,000 debris disks with SMI, SAFARI: 1100 hrs

On-going international science activity

- ESA Science Study Team (Europe 6, Japan 5)
- Science WGs (led by Europe, + Japan, U.S.,,,)
 - Under ESA Science Study Team, responsible for writing ESA Yellow Book.
 - (1) Galaxy evolution, (2) Nearby galaxies, (3) ISM/Star formation, (4) Protoplanetary disks/Debris disks, (5) Solar system/exoplanets

4. Schedule As of May 2019

- 2019/12: ESA-JAXA Key Decision Point : telescope configuration fixed
- 2020/1-3: ISAS Pre-Phase A2 Completion Review, Delta MDR
- 2020/04: ESA Mission Consolidation Review (MCR): mission concept fixed
- 2020/04-(TBD): JAXA Project Preparation Review
- 2021/03-04: ESA Mission Selection Review (MSR): ESA M5 final selection
- 2021/04-(TBD): JAXA System Requirement Review
- 2023: JAXA System Definition Review
- 2024:02-03: ESA Mission Adoption Review: ESA project approval
- 2024/06: JAXA Project Starting Review

Mission Selection Review confirms "readiness for transition into Phase B1". Adequacy of the mission requirements,

Demonstration of "an architecture" to meet the requirements

Summary

SPICA: mid-/far-IR astronomy mission covering 10–350 μm. SMI (mid-IR LR, MR, HR spectroscopy, imaging) SAFARI (far-IR LR, HR spectroscopy), B-BOP (polarimetry)

SPICA would unveil the dusty era in the Universe, and find a route to habitable planets.

Now in Phase A activity. ESA CV final selection is mid-2021. Launch: ~2030, mission lifetime: 5 years

5 Science WGs for ESA Yellow Book.

SPICA JAXA HP: http://www.ir.isas.jaxa.jp/SPICA/SPICA_HP/index-en.html **SMI HP:** http://www.ir.isas.jaxa.jp/SPICA/SPICA_HP/SMI/index.html

日本天文学会2020年春季年会