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Galaxies evolve in various aspects:

1. Introduction
1.1 What is the galaxy evolution? 

This is the formal and ultimate goal of the studies on
galaxy evolution, but clearly it is a substantially
complicated problem. It is time to define the evolution of
galaxies with more objective point of view.

x = x(T|T > t)



The ISM evolves drastically, depending on various local
physical conditions and processes.

⇒ The governing equations would be also very complex
and highly entangled with each other.

This situation is similar in the studies on the ISM in galaxies.

1.2 “Evolution” of the ISM



2. Example: Classification in Luminosity Space
2.1 Data: VIMOS Public Extragalactic Redshift Survey 
(VIPERS)

http://vipers.inaf.it/



• Redshifts
• Spectra
• Photometry from CFHTLS ugriz (optical), GALEX FUV
and NUV (ultraviolet), and additional ZYJHK and Ks (near-
infrared) bands (and other properties derived from SED
fitting).

• Stellar mass from Hyperzmass code
• Line-estimated metallicity for subsamples with high-S/N
spectra

• Density field reconstructed from galaxy distribution
• Cluster/group membership

• Ancillary data (Herschel, WISE, etc.)

VIPERS products



Construct a subsample with high-S/N data: 52,114
Redshift range: 0.4 < z < 1.3
Twelve rest-frame magnitudes (FUV, NUV, u, g, r, i, z, B,
V, J, H, Ks) and redshift, normalized around unity.

⇒ The feature space is 13-dimensional, perhaps
impossible to identify any feature by intuition.

2.2 Classification in multiwavelength luminosity space
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2.2 Classification in multiwavelength luminosity space

Machine learning!



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.



Unsupervised machine learning in luminosity space

Fisher Expectation-Maximization (FEM) algorithm
(Bouveryron & Brunet 2012)

1. Assign initial cluster (class) centers by k-means++
2. Execute FEM

i. E-step: calculate the complete log-likelihood
under the current value of the Gaussian
mixture model

ii. F-step: boundary is chosen to maximize the
distances between groups, and to minimize the
internal scatters

iii. M-step: parameters of Gaussian functions are
optimized by maximizing the conditional
expectations of the complete log-likelihood

iv. Back to 2.i (E-step) until the result converges.



1. Choose one center uniformly at random from sample
data points.

2. For each data point x, compute D(x), the distance
between x and the nearest center that has already been
chosen.

3. Choose one new data point at random as a new center,
using a weighted probability distribution where a point x
is chosen with probability proportional to D(x)2.

4. Repeat Steps 2 and 3 until k centers have been chosen.

5. Now that the initial centers have been chosen, proceed
using standard k-means clustering.

k-means++ algorithm



k-means++ algorithm

k-means k-means++

https://qiita.com/NoriakiOshita/items/cbd46d907d196efe64a3
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For m variables and n Gaussians, 

x : [ x1, x2, x3, … xm ]
μk : mean vector (1 × m) of k-th Gaussian
Σk : covariance matrix (m × m) of k-th Gaussian
πk  : mixing coefficient

Gaussian mixture model



PDFScatter plot

Gaussian mixture model: example



Estimation of the parameters for Gaussian mixture model
Given a dataset x : [ x1, x2, x3, … xm ], we estimate

μk : mean vector, 
σk : covariance matrix, and 
πk  : mixing coefficient

via maximum likelihood method. 



When N data are divided into K clusters, a log-likelihood
function is

8

Estimation of the parameters for Gaussian mixture model

We calculate a contribution function 𝜸𝜸(𝒛𝒛𝒏𝒏𝒋𝒋)

(𝒛𝒛 : latent variable, 𝟎𝟎 ≤ 𝒛𝒛 ≤ 𝟏𝟏)



2.3 Result

The FEM classification separates VIPERS galaxies into
twelve classes.

N.B. Twelfth class is the AGN and not included in the
further discussion.
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The UVJ diagram

Williams et al. (2009) and subsequent authors proposed
that the UVJ diagram provide a separation between
passive and star-forming galaxies.
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Selection of best model and optimal number of classes

The number of classes is knot known a priori: a major
difficulty in unsupervised algorithm.

In this work, the best model and the range of possible
classes are chosen based on three statistical model-
selection criteria: AIC (Akaike 1974), BIC (Schwarz
1978), and ICL (Baudry 2012).

Siudek et al. (2018)



Selection of best model and optimal number of classes

The result can be intuitively verified on a NUVrK
color-color diagram.

Siudek et al. (2018)
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Selection of best model and optimal number of classes

The result can be intuitively verified on a NUVrK
color-color diagram.

Siudek et al. (2018)
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High-z AGNs



The NUVrK diagram

The NUVrK diagram (Arnouts et al. 2013) is similar to
the UVJ plane but allows for a better separation between
passive and star-forming galaxies.
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The redshift (in)dependence at 0.4 < z < 1.0

The color evolution of galaxies is clearly visible, but the
classification is almost unchanged with redshifts.
0.4 < z < 0.5 0.5 < z < 0.6 0.6 < z < 0.7

0.7 < z < 0.8 0.8 < z < 0.9 0.9 < z < 1.0

10/19



The NUVrK 3D diagram

The red galaxies are divided into three subclasses,
separated by the FUV - NUV color.



D4000: indicator of galaxy age (relatively new SFH)
EW[OII]: emission from SF region
Sérsic index: shape parameter indicating early (~ 4) or late
(~ 1) type

2.4 Global properties of classified galaxies
Spectral and morphological features



A turnover exists in some colors.

Colors
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Stacked spectra of class 1-6 
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Stacked spectra of class 7-11 



Summary of spectral features in classified galaxies

Class 1-3 (red)
Strong absorption features, D4000 break, red
continuum

Class 4-6 (green)
Balmer absorption, gradually stronger emission
lines

Class 7-11 (blue)
Strong emission lines, blue continuum

Redshift dependence
In each class, higher-z galaxies have gradually bluer
continuum, significant at longer wavelengths



Stellar mass and specific SFR (sSFR)

sSFR: SFR per stellar mass [yr-1]

Indicator of the SF activity normalized with the galaxy size.



Main sequence of star-forming galaxies

The main sequence is naturally reproduced from this
method. Note that this is free from color selection bias,
which introduced a significant confusion in this diagram.
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3. Application to SPICA Galaxies
3.1 Evolutionary Sequence at Infrared

The IR regime provides large amount of additional
information to the SEDs of galaxies.

Galliano et al. (2008)



Galliano et al. (2004)

We can perform a similar analysis for the galaxy
population detected by SPICA, including IR emission
lines/bands!

⇒ It will reveal the obscured side of galaxy evolution
as a sequence of various physical properties.

3.1 Evolutionary Sequence at Infrared



3.2 Evolutionary Census of the ISM in Galaxies

Various IR diagnostics have been proposed. We can do this
business all at once by the unsupervised machine learning!

Spinoglio et al. (2017)



3.2 Evolutionary Census of the ISM in Galaxies

Various IR diagnostics have been proposed. We can do this
business all at once by the unsupervised machine learning!

Spinoglio et al. (2017)

We will have a “submanifold” in the high-dimensional feature
space, which shows the sequence of the ISM evolution.



4. Conclusions

It is time to reconsider what the galaxy evolution is. We
propose an objective method to discover the sequence of
galaxy evolutionary properties “galaxy manifold” with
unsupervised machine learning. This can also be applied to
explore the evolutionary aspects of the ISM in galaxies.

1. We performed an unsupervised machine learning
classification directly to the twelve-dimensional
luminosity-redshift space of VIPERS galaxies.

2. Our classification yielded twelve galaxy classes (+ one
AGN class). Class 1-3 corresponds to red passive galaxies,
4-6 to “green” galaxies, and 7-11 to blue star-forming
galaxies, respectively. This forms a submanifold in the
13-dim feature space: galaxy manifold.



4. Conclusions

3. Classes 1-3 show stronger absorption lines and D4000
and Sérsic index n ~ 4 (spheroid-like), indicating old
stellar population. Classes 7-11 show strong [OII]
emission and n ~ 1 (disk-like), consistent with active SF.

4. The star-forming galaxy main sequence is clearly
reproduced by classes 7-11, with class 1-3 as quiescent
non-star forming galaxies. Note that, in contrast to
previous studies, our result is not affected by the
complicated color selection and robust.

5. This will be very useful to explore the evolutionary track
of galaxies at IR, since the IR spectral features provide
large amount of additional information.



4. Conclusions

6. Various IR line/band diagnostics have ever been
proposed. The proposed method can do this type of
analysis at once objectively. This will open a new window
to the systematic exploration of the physical properties
in the galaxy ISM.
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